Uniwersytet Śląski
40-007 Katowice, ul. Bankowa 14

tel/fax (032) 2582976

Tomasz Połacik


  1. Operators defined by propositional quantification and their interpretations over Cantor space. Reports on Mathematical Logic, 27:67-79, 1993.

  2. Second order propositional operators over Cantor space. Studia Logica, 53:93 105, 1994.

  3. On topological interpretations of some nonstandard intuitionistic propositional operators. Ruch Filozoficzny, LI:337-340, 1994.

  4. Propositional quantification in intuitionistic logic.G.Gottlob, A.Leitsch, D.Mundici (eds.), "Computational Logic and Proof Theory" (Proceedings), 5th K.Gödel Colloquium 1997, Wien; Springer, 255-263.

  5. Zanurzenia algebr Heytinga w przestrzenie topologiczne. Prace Naukowe WSP w Czestochowie. Matematyka V, Czestochowa 1997.

  6. Propositional quantification in the monadic fragment of intuitionistic logic. Journal of Symbolic Logic, 63:269-300, 1998.

  7. Pitts' quantifiers are not propositional quantification. Notre Dame Journal of Formal Logic, 39:531-544, 1998.

  8. Models of intuitionistic arithmetic. Prace Naukowe WSP w Czestochowie. Matematyka VI, Czestochowa 1999.

  9. Induction schemata valid in Kripke models of intuitionistic arithmetical theories. Reports on Mathematical Logic, 33:111-125, 1999.

  10. Partially elementary extension Kripke models and Burr's hierarchy. Bulletin of the Section of Logic, 28(4):207-213, 1999.

  11. Maximum property for propositional quantification. Acta Universitas Wratislaviensis No 2466 (2002), seria: Logika, 61-65.

  12. Quantified intuitionistic propositional logic and Cantor space. Bulletin of the Section of Logic, 32(1/2):65-73, 2003.

  13. Simple axioms which are obviously true in N, with Wim Ruitenburg. The Review of  Modern Logic, 9(1/2):67-79, 2001/2003.

  14. Kripke models of certain subtheories of Heyting Arithmetic. In "Logic Colloquium '99. Proceedings of the Annual European Summer Meeting of the Association of Symbolic Logic, held in Utrecht, Netherlands August 1 6, 1999'' edited by Jan van Eijck, Vincent van Oostrom, Albert Visser. Lecture Notes in Logic 17. A K Peters, Ltd. Natick, Massachusetts, 2004, 136-142.

  15. Anti chains, focuses and projective formulas. Bulletin of the Section of Logic, 34(1):1-12, 2005.

  16. The unique intermediate logic whose every rule is archetypal. Logic Journal of the IGPL 13(3):269-275, 2005.

  17. Partially elementary extension Kripke models: a characterization and applications. Logic Journal of the IGPL 14(1):73-86, 2006.

  18. Back and forth between Kripke models. Logic Journal of IGPL 16(4):335-355, 2008, doi: 10.1093/jigpal/jzn011.

  19. Archetypal rules and intermediate logics. Michal Pelis, Vit Puncochar (editors), The Logica Yearbook 2011, pp. 227-238, College Publications, London, 2012.

  20. Bisimulation Reducts and Elementary Submodels of Kripke Models. Bulletin of the Section of Logic, 42(3/4):1-10, 2013.

  21. A Semantical Approach to Conservativity. Studia Logica, 104 (2): 235-248, 2016. DOI: 10.1007/s11225-015-9639-7.

  22. Classically Archetypal Rules, with Lloyd Humberstone. Review of Symbolic Logic, 11(2):279-294, 2018.


  1. Topological interpretations of second order intuitionistic propositional logic (Abstract). Volume of Abstracts of Tenth International Congress of Logic, Methodology and Philosophy of Science. Florence, 1995.

  2. Kripke Models of arithmetical theories (Abstract). Volume of Abstracts of 11th International Congress of Logic, Methodology and Philosophy of Science, Kraków, 1999.
  3. Quantified propositional formulas, intuitionistic logic, and Cantor space. Manuscript, 2001.

In preparation

  1. Kripke model equivalence and bisimulation over intuitionistic predicate calculus, with Wim Ruitenburg