INSTYTUT MATEMATYKI
Uniwersytet Śląski
40-007 Katowice, ul. Bankowa 14

tel/fax (032) 2582976
e-mail:im@ux2.math.us.edu.pl


Piotr Wojtylak


                                              published papers


[1] Some generalizations of Makinson's theorem on structural completeness,
     Reports on Mathematical Logic 7 (1976), 107-110, 
     MR 57#9518, Zbl 358#02064.
[2] On structral completeness of many-valued logicStudia Logica 38  (1978),
     139-147,  MR 80i#03027,  Zbl 393#03011.
[3] Matrix representations for structural strengthenings of a propositional Iogic,
    Studia Logica 38 (1979), 263-266, MR 82b#03066, Zbl 422#03009;
     preprint in Bulletin of the  Section  of Logic, Polish  Academy of Sciences 8
     (1979) no.2, 72-78,  MR 80i#03041, Zbl 412#03013.
[4] Mutual interpretability of sentential logics,  Reports on Mathematical Logic
   
 11 (1981) ,69-89 ,  MR 82k#03033 , Zbl 468#03006.
[5] Mutual interpretability of sentential logics, Part II, Reports on Mathematical
     Logic
12 (1982), 51-66, MR 82k#03033b, Zbl 468#03007.
[6] Elements of the theory of completeness in  propositional logic, (joint work with
    Witoldem A.Pogorzelskim),  monograph, Silesian University,  Katowice 1982,
    MR 84g#03001,  Zbl 339#03002.
[7] Corrections to the paper of T.Prucnal: Structural completeness of Lewis's
     system S5, Buletin de l'Academie Polonaise
 des Sciences  20  (1972) pp.
     101-103,  MR 46:8807,
 Reports on Mathematical Logic 15(1983), 67-70,
    MR 84g#03028, Zbl 515#03006.
[8] Collapse of a class of infinite disjunctions in intuitionistic propositional logic,
    Reports on Mathematical Logic 16 (1983) , 37-49 ,
    MR 86b#03017, Zbl 599#03024.
[9] A proof of Herbrand's theorem,
    Reports on
Mathematical Logic 17 (1984), 13-17, MR 85m#03007.
[10] An example of a finite though finitely non-axiomatizable matrix, Reports on
    Mathematical Logic
17 (1984), 39-46,  MR 86g03051, Zbl 563#03011.
[11] A new proof of structural completeness of  Łukasiewicz's logics, Bulletin of
     the Section of Logic,
Polish Academy of Sciences 5 (1976), 145-152,
    MR 58#1457.
[12] On structural completeness of the infinite-valued Łukasiewicz's propositional
     calculus
, Bulletin of the Section of Logic, Polish Academy of Sciences 5
     (1976), 153-157, MR 58#21458.
[13] Strongly finite logics: finite approximatizability and the problem of  
     supremum,
  Bulletin of the Section of Logic,  Polish Academy of Sciences
   
 8  (1979)  no. 2, 99-111,  MR 80g#03027 Zbl 409#03017.
[14] A recursive theory for the { ->,+,×,¬,°} fragment of intuitionistic logic,
    Reports on Mathematical Logic 18 (1984), 3-36,
    MR 86h#03045, Zbl 583#03014.
[15] Independent axiomatizability in intuitionistic logic, Abstracts of VIII
     International Congress of Logic,
  Methodology and Philosophy of
    Sciences
, Moscow 1987, Nauka, Vol 5,  Part 1, 83-85.
[16] Independent axiomatizability of sets of  sentences
    Annals of Pure and Applied Logic 44 (1989), 259-299.
[17] Independent recursive axiomatization,  Abstracts of papers, Logic Colloquium
     1989, Berlin, Journal of Symbolic Logic  107 (1993), 348.
[18] A syntactical characterization of structural completeness for implicational
     logics
, Bulletin of the Section of Logic, Polish  Academy of Sciences
     19 (1990),  2-9, MR 91c#03023.
[19] Structural  completeness of implicational logics,
    Studia Logica 51 (1991) no. 1, 275-298, MR 93f#03012.
[20] Restricted versions of compactness theorem, (joint work with Adam Kolany),
    Reports an Mathematical Logic 25 (1991), 91-103, MR 93m#03016.
[21] Elementy algebraicznej teorii logiki  kwantyfikatorów, (joint work with Witold A. Pogorzelski),
     text book for students, Filia UW w Białymstoku,  Białystok 1992, 48 pages.
[22] 2-Sat is not equivalent to Boolean Prime Ideal Theorem,  in: . Logic at Work,      
      Essays Dedicated to the Memory of  Helena Rasiowa
, ed. Ewa Orłowska,                 
     Springer-Verlag Company
, 1998,  580-583, MR 2000g#03115.
[23] Finite distributive lattices as sums of Boolean algebras,  (joint work with Jerzy Kotas), 
     Reports on  Mathematical Logic 29 (1995), 35-40,    MR 97h#06019.
[24] The uniquness of the decomposition of distributive lattices into sums of
    Boolean lattices,
(joint work with Joanna Grygiel), Reports on Mathematical
     Logic
31 (1997), 93-102,   MR2001b#06012.
[25] Uogólnianie dowodów, (in Polish)
    Prace Naukowe WSP Częstochowa,   Matematyka V (1997), 118-128.
[26] Axiomatizability of logical matrices in: Emil L. Post and the Problem of
     Mechanical Provability,
A survey of Posts's Contributions in the Century of His Birth,
    Studies in Logic, Grammar and Rhetoric
2 (15)(1998),  77-89.
[27] The sum operation and link lattices, (joint work with Joanna Grygiel),
    Prace Naukowe WSP w Częstochowie, Matematyka VI 1999, 23-28.
[28] Uogólnianie dowodów w logice kwantyfikatorów z identycznością, (in Polish)
    Acta Universitis Wratislavienisis 2180,  Logika 19 (1999), 87-93.
[29] On the problem of R.E. Tax (joint work with Andrzej Wroński),
    Reports on Mathematical Logic 35 (2001), 87-101, MR 2002e#03024.
[30] Cn-definitions of propositional connectives,  (joint work with Witold A.
    Pogorzelski),  Studia Logica 67 (2001), 1-67, MR 2002i#03013.
[31] On a problem of H. Friedman and its solution by T.Prucnal,
    Reports on Mathematical Logic 38(2004), 69-86.
[32] Logika matematyczna na Uniwersytecie Sląskim}, (in Polish) in: Pół wieku
    matematyki na Górnym Śląsku,
ed. K. Skórnik, Wydawnictwa Uniwesytetu
    Śląskiego
(2003),     Katowice 165-170.
[33] A proof system for classical logic, (joint work with Witold A. Pogorzelski),  
    Studia Logica
80(1) (2005), 95-104.
[34] Generalizing proofs in monadic languages, (joint work with Matthias Baaz),  
    with a poscript by G.Kreisel, Annals of Pure and Applied Logic 154(2008),
    71-138.
[35] Completeness theory for propositional logics, monograph,  (joint work with
    Witold A. Pogorzelski), Studies in Universal Logic, Birkhaser,
    Basel- Boston-Berlin 2008, 108 pages.
[36]  An algorithm for the number of path momomorphisms, (joint work with
    Srichan Arworn), Discrete Mathematics, 309(2009), 5569-5573.





[LOGIC GROUP]  [STRUCTURE]  [INSTITUTE OF MATHEMTICS]

[HOME PAGE]  [CV]  [PAPERS]   [RESEARCH]   [TEACHING]