AUTOMORPHISMS OF Σ_{n+1}^{-} INVARIANT TRILINEAR FORMS

Andrzej Sladek, Małgorzata Wołowiec-Musiał

Abstract. Examination of automorphism groups of forms is undertaken by many authors. Sometimes the description of such groups is a difficult task. It turns out that a representation of a form as a sum of powers of linear forms may be very helpful, especially when this representation is unique. We show this in the case of Σ_{n+1}^{-} invariant symmetric trilinear form Θ considered by Egawa and Suzuki.

Any $d-$linear symmetric form $\Theta : V^d \rightarrow K$ on the $K-$vector space V determines the form (homogeneous polynomial) of degree d defined by

$$f_\Theta(X_1, \ldots, X_n) := \Theta(\sum_{i=1}^{n} X_i e_1, \ldots, \sum_{i=1}^{n} X_i e_i),$$

where (e_1, \ldots, e_n) is the basis of V. In the sequel suppose that K is a field of characteristic 0. Then, by the polarization formula, the correspondence $\Theta \mapsto f_\Theta$ is bijective. An automorphism φ of Θ is any automorphism φ of V such that

$$\Theta(\varphi(\alpha_1), \ldots, \varphi(\alpha_d)) = \Theta(\alpha_1, \ldots, \alpha_d), \text{ for } \alpha_1, \ldots, \alpha_d \in V.$$

The automorphisms of Θ form a group $\text{Aut}(\Theta)$. Of course, $\varphi \in \text{Aut}(\Theta)$ if and only if $\varphi \in \text{Aut}(f_\Theta)$, that is,

$$f_\Theta(\varphi(X_1, \ldots, X_n)) = f_\Theta(X_1, \ldots, X_n).$$

It means that $\text{Aut}(\Theta) = \text{Aut}(f_\Theta)$.

It is known that the space $F_{n,d}(K)$ of forms over K of degree d in n variables is spanned by $d-$th powers of linear forms (see [5, Proposition 2.11]). Therefore any form $f \in F_{n,d}(K)$ over an algebraically closed field K can be written in the following way

(1) $$f = l_1^d + \ldots + l_r^d, \text{ where } l_j^d = (\alpha_{1j} X_1 + \ldots + \alpha_{nj} X_n)^d, \quad \alpha_{ij} \in K.$$

It is obvious that any automorphism of V that permutes the summands in (1) belongs to $\text{Aut}(f)$. Thus, if we know the representation (1) of f, then we get certain information about automorphisms of f. It can happen that when r is fixed the representation (1) of f is unique (that is, the linear forms l_1, \ldots, l_r are unique up to reordering and multiplying by $d-$th roots of unity). In such a case we can derive from (1) the complete information about $\text{Aut}(f)$. Uniqueness of the representation of forms as a sum of powers of linear forms was discussed by many authors in the previous century. However, usually generic forms were considered. Nice exposition of the results presents the book by A. Iarrobino and V. Kanev [4]. Information on unique representation of special forms one can find among others in [5], [1] and [2].

2000 Mathematics Subject Classification. 11E76

Key words and phrases. symmetric trilinear form, automorphism group, unique representation, sum of powers of linear forms.
The influence of a given representation (1) of f on the structure of $\text{Aut}(f)$ will be examined in [6]. In this paper we show how it works in one special case.

Egawa and Suzuki [3] considered a trilinear form constructed in the following way. Let Σ_{n+1} be the symmetric group on the set $\{0,1,\ldots,n\}$ for $n \geq 2$ and let $V = \langle e_1, \ldots, e_n \rangle$ be the natural n-dimensional irreducible Σ_{n+1}-module over the complex number field \mathbb{C}. That means that (e_1, \ldots, e_n) is a basis of V and Σ_{n+1} acts on $\{e_0, e_1, \ldots, e_n\}$ in a standard way, where $e_0 = -(e_1 + \cdots + e_n)$. A Σ_{n+1}-invariant symmetric trilinear form Θ_n on V was defined by

$$\Theta_n(e_j, e_j, e_j) = n(n-1), \quad 1 \leq j \leq n,$$

$$\Theta_n(e_j, e_j, e_k) = -(n-1), \quad 1 \leq j, k \leq n, \quad j \neq k,$$

$$\Theta_n(e_j, e_k, e_l) = 2, \quad 1 \leq j, k, l \leq n, \quad j \neq k \neq l \neq j.$$

They proved that if Θ is an arbitrary nonzero Σ_{n+1}-invariant symmetric trilinear form, then $\Theta = a\Theta_n$, $0 \neq a \in \mathbb{C}$. The main result of their paper was the following theorem.

Theorem. [3, Theorem 2] If $n = 2$ or $n \geq 4$, then $\text{Aut}(\Theta_n) \cong \mu_3 \times \Sigma_{n+1}$, where μ_3 is the group of complex 3rd roots of unity.

The proof of this theorem was quite long. It took several pages, used a few lemmas and required separately the case of even and odd n. The aim of this paper is to show for $n \geq 4$ a very short proof using a representation of f_{Θ_n} as a sum of third powers of linear forms. Observe that

$$f_{\Theta_n}(X_1, \ldots, X_n) = \Theta_n\left(\sum_{i=1}^{n} X_i e_i, \sum_{i=1}^{n} X_i e_i, \sum_{i=1}^{n} X_i e_i\right) =$$

$$= n(n-1) \sum_{i=1}^{n} X_i^3 - 3(n-1) \sum_{i,j=1}^{n} X_i^2 X_j + 12 \sum_{i,j,k=1}^{n} X_i X_j X_k =$$

$$= -\frac{1}{n+1}((X_1 + X_2 + \ldots + X_n)^3 + (-nX_1 + X_2 + \ldots + X_n)^3 +$$

$$+ (X_1 - nX_2 + \ldots + X_n)^3 + \ldots + (X_1 + \ldots - nX_n)^3).$$

Proof. Suppose $n \geq 4$. Notice that if we apply the nonsingular linear substitution

$$X_i \mapsto -\frac{1}{\sqrt{n+1}}(X_1 + \ldots + X_{i-1} - nX_i + X_{i+1} + \ldots + X_n), \quad i = 1, \ldots, n$$

to the form f_{Θ_n}, then we get the form

$$g_n(X_1, \ldots, X_n) := (-X_1 - \ldots - X_n)^3 + X_1^3 + \ldots + X_n^3.$$

Thus it suffices to consider g_n instead of f_{Θ_n}. It can be readily verified that g_n is nondegenerate which means that $(0, \ldots, 0)$ is the only common zero of the partial derivatives $\partial^2 g_n / \partial X_i \partial X_j$, for $i, j = 1, \ldots, n$.

Now we shall show that g_n is indecomposable, that is, g_n can not be transformed by a nonsingular linear substitution to a form $g(X_1, \ldots, X_k) + h(X_{k+1}, \ldots, X_n)$,
for some forms $g \in F_{k,3}(K), h \in F_{n-k,3}(K)$ and $k \in \{1, \ldots, n-1\}$. Suppose that g_n is decomposable and for some nonsingular linear substitution φ

$$f(X_1, \ldots, X_n) := g_n(\varphi(X_1, \ldots, X_n)) = g(X_1, \ldots, X_n) + h(X_{k+1}, \ldots, X_n), \ 1 \leq k \leq n-1.$$

Applying the hessian H to the sides of the above equality we have

$$(2) \quad H_f(X_1, \ldots, X_n) = H_g(X_1, \ldots, X_k)H_h(X_{k+1}, \ldots, X_n).$$

Now taking into account that g_n the above representation of g_n as a sum of $n+1$ third powers of linear forms l_0, l_1, \ldots, l_n is unique and every automorphism permutes the summands in this representation. Consider the group homomorphism

$$\Phi : \text{Aut}(g_n) \rightarrow \Sigma_{n+1}, \ \Phi(\varphi) = \sigma \iff l_0^3(\varphi(X_1, \ldots, X_n)) = l_0^3(\sigma(X_1, \ldots, X_n)).$$

By [2, Theorem 3.4] that says

"If a nondegenerate and indecomposable form of degree $d \geq 3$ in $n \geq 4$ variables is a sum of $n+1$ $d-$th powers of linear forms, then the linear forms are unique up to reordering and multiplying by $d-$th roots of unity, the above representation of g_n as a sum of $n+1$ third powers of linear forms l_0, l_1, \ldots, l_n is unique and every automorphism permutes the summands in this representation. Consider the group homomorphism

$$\Phi : \text{Aut}(g_n) \rightarrow \Sigma_{n+1}, \ \Phi(\varphi) = \sigma \iff l_0^3(\varphi(X_1, \ldots, X_n)) = l_0^3(\sigma(X_1, \ldots, X_n)).$$

Notice that cycles $(0, i)$ and $(1, \ldots, n)$ belong to imΦ, so Φ is an epimorphism. Moreover, ker $\Phi = \mu_3 \text{id}_V$. In this way we get the exact sequence

$$0 \rightarrow \mu_3 \text{id}_V \rightarrow \text{Aut}(g_n) \rightarrow \Sigma_{n+1} \rightarrow 0$$

which splits. Since $\mu_3 \text{id}_V$ is contained in the center of $\text{Aut}(g_n)$ we have

$$\text{Aut}(g_n) \cong \mu_3 \times \Sigma_{n+1}.$$"

By the hessian H to the sides of the above equality we have

$$H_f(X_1, \ldots, X_n) = H_g(X_1, \ldots, X_k)H_h(X_{k+1}, \ldots, X_n).$$

Applying the hessian H to the sides of the above equality we have

$$(2) \quad H_f(X_1, \ldots, X_n) = H_g(X_1, \ldots, X_k)H_h(X_{k+1}, \ldots, X_n).$$

Now taking into account that g_n is a reducible polynomial. However, this is not true, because by Eisenstein criterion, H_{g_n} is an irreducible polynomial. Let

$$l_0(X_1, \ldots, X_n) = -(X_1 + \ldots + X_n), \ l_i(X_1, \ldots, X_n) = X_i, \ i = 1, \ldots, n.$$ By [2, Theorem 3.4] that says

"If a nondegenerate and indecomposable form of degree $d \geq 3$ in $n \geq 4$ variables is a sum of $n+1$ $d-$th powers of linear forms, then the linear forms are unique up to reordering and multiplying by $d-$th roots of unity, the above representation of g_n as a sum of $n+1$ third powers of linear forms l_0, l_1, \ldots, l_n is unique and every automorphism permutes the summands in this representation. Consider the group homomorphism

$$\Phi : \text{Aut}(g_n) \rightarrow \Sigma_{n+1}, \ \Phi(\varphi) = \sigma \iff l_0^3(\varphi(X_1, \ldots, X_n)) = l_0^3(\sigma(X_1, \ldots, X_n)).$$

Notice that cycles $(0, i)$ and $(1, \ldots, n)$ belong to imΦ, so Φ is an epimorphism. Moreover, ker $\Phi = \mu_3 \text{id}_V$. In this way we get the exact sequence

$$0 \rightarrow \mu_3 \text{id}_V \rightarrow \text{Aut}(g_n) \rightarrow \Sigma_{n+1} \rightarrow 0$$

which splits. Since $\mu_3 \text{id}_V$ is contained in the center of $\text{Aut}(g_n)$ we have

$$\text{Aut}(g_n) \cong \mu_3 \times \Sigma_{n+1}.$$"

Remark. The proof presented above works over any field K of characteristic 0 which contains a primitive third root of unity. We have not to worry about the coefficient $-\frac{1}{\sqrt[n+1]{3}}$ used in the proof, because at the beginnig we could have considered the form $-(n+1)f_{\Theta_n}$ instead of f_{Θ_n}. In case K lacks a primitive third root of unity we can easily reorganize the proof to get $\text{Aut}f_{\Theta_n} \cong \Sigma_{n+1}$.

\[\square\]
AUTOMORPHISMS OF Σ_{n+1}--INARIANT TRILINEAR FORMS

REFERENCES

Address:

Institute of Mathematics, Silesian University, Bankowa 14, 40-007 Katowice, Poland
e-mail: sladek@ux2.math.us.edu.pl

Department of Mathematics, Rzeszów University of Technology, W. Pola 2, 35-959 Rzeszów, Poland
e-mail: wolowiec@prz.rzeszow.pl