Remark 9.2. Let V C k™ and W C k™ be affine varietes, let f: V' — W be a rational map,
f=(f1,es frn) with f1,.... frn € k(V'). There exists an open set ) £ U C V such that f [, ...,
fm [ are regular on U. In other words, we can think of rational maps as defined on open subsets.






Remark 9.4. Let V C k™ and W C k" be affine varietes, let f:V — W be a rational map and
assume that f(V/) is dense in W. The map f defines a field embedding f*: k(W) — Ek(V).



Definition 9.5. Let V C k™ and W C k™ be affine varietes, let f:V — W be a rational map
such that f(V') is dense in W. The map f is a birational equivalence if there is a rational map

g: W — V such that g(W) is dense in V and

fog=1lw and go f=1y.

In this case we say that V and W are birationally equivalent or birational.






Example 9.7. Let V=Z(zy—1) and W = Z(y), let f:V — W be given by (z,y)— (z,0).
This is a birational equivalence, but not an isomorphism.



Example 9.8. Let V=Z(y)and W=Z(y?—2?), let f: VW beglven by (z,0)— (22, 23).

This is a birational equivalence (the inverse map g: W — V being (z, y) — ( ) but not an
isomorphism.



Proposition 9.9. Let V C k™ and W C k" be affine varietes, let f: V' — W be a birational
equivalence. Then there exist open subsets U C V and U’ C W which are isomorphic.



Proposition 9.10. (Noether normalization lemma) Let k be algebraically closed, and k C K
a finitely generated field extension. Then there exist elements z1, ..., 2441 € K with K =k(z1, ...,
Z4+1) such that zy, ..., zq are algebraically independent over k, and z;.1 is separable over

k(zb ) ZCH—l)'



Proposition 9.11. Let V' C k™ be an affine variety. Then V is birationally equivalent to a
hypersurface of some affine space k™.






10 Projective space. Projective algebraic sets.

10.1 Projective space.

The concept of a projective space originated from the visual effect of perspective, where parallel
lines seem to meet at infinity. A projective space may thus be viewed as the extension of an
Euclidean space in such a way that there is one point at infinity for each direction of parallel lines.



Consider the affine plane k2. Each point (z, y) € k? can be idetified with the point (z,y,1) € k°.
Every point (z, 3, 1) € k® determines a line in k° that passes through (0,0, 0) and (z, y, 1).
Every line through (0, 0, 0) except those lying on the plane z = 0 corresponds to exactly one
such point. The lines through (0,0,0) in the plane 2 =0 can be thought of as corresponding to

the “points at infinity".



Definition 10.1. Let k be a field. Projective n-space over k, written IP"(k), is defined to be
the set of all lines through (0, ...,0) € k"1 Any point (x1,...,2,1)# (0,...,0) determines a
unique such line, namely {(Ax1, ..., \x,+1)| A € k}. Elements of P"(k) are called points. If
a point P € P"(k) is determined as above by some (x1,...,7,11) € k" T\ {(0,...0)}, we say
that (x1,...,2,11) are the homogeneous coordinates of P and write P = |x1:...: 7}, 11].



Remark 10.2. Let IP"(k) be a projective n-space over k. Two points (21, ..., Tyn11), (Y1, ...,
Yn+1) € k™1 determine the same line is and only if there is a nonzero A € k such that
T1=AY1, ..., Tnt1=NYns1. Let us say that (z1,....,2,11), (Y1,..., Yns1) €™ are equivalent
if this is the case. Then P (k) may be identified with the set of equivalence classes of points

k"1 {(0,...0)).



Remark 10.3. Let P (k) be a projective n-space over k and let P € P"(k), P=[x1:...:xp11].
Note that the i-th coordinate x; is not well-defined, but that it is a well-defined notion to say

whether the i-th coordinate is zero or nonzero. If z; # 0 the ratios x; / x; are well-defined, since
they are unchanged under the abovedescribed equivalence.



Definition 10.4. Let P"(k) be a projective n-space over k. Let
Ui={[y1: ...t yn+1] €P" (k)| y; # 0}

Each P € U; can be written uniquely in the form
P=lzy:..cox;_1:lixipq: i Zpyal

The coordinates (x1,...,%;—1,T;i+1,...,Tn+1) are called the nonhomogeneous coordinates of
P with respect to U,.



Remark 10.5. Let [P"(k) be a projective n-space over k. Define ¢;: k" — U, by

901'(331, vy .CEn> = [Z’li ceer Ly —1- 1: 4 by ST [ Z‘n]

Then ¢, defines a bijective correspondence between k™ and U;. Note that P"(k) = U;:Lll Ui
so that P"(k) is covered by n + 1 bijective copies of k.



Definition 10.6. Let P"(k) be a projective n-space over k. The set

Hoo =P™"(k)\Upr1={[z1:...: Tpy1]| Znr1=0}

is called the hyperplane at infinity.



Remark 10.7. Let P"(k) be a projective n-space over k. The map H,, — P" (k) given by
(10 a0 = [z .y

is bijective. Thus H,, may be identified with P"~1(k) and P"(k) = U,, 1 U H., is the union
of an affine n-space and a set that gives all directions in affine n-space.



Example 10.8.

1.
2.

P°(k) is a point.

PY(k) = {[x: 1]| x € k} U {[1: 0]} is the affine line plus one point at infinity. We call it
projective line over k.

PAEEk) ={[z:y: ]|z, y € k} U {{z: y: 0]| [z: y] € P'(k)}. Here H. is called the line at

infinity. P?(k) is called the projective plane over k.

. Consider a line £: y=ax +b in k2. If we identify k? with U3 CIP?(k), the points on the line

¢ correspond to the points {[z: y: z]|y =ax +bz and 2#£0} € P?(k). Then
{lz:y: 2]l y=ax+ bz} N Hy={[1:a: 0]},

so that all lines with the same slope a, when extended that way, pass through the same point
at infinity.

. Consider the curve C: y> = 2° + 1 in k%. The corresponding set in P%(k) is given by the

equation y? =%+ 2%, z#0. Thus
{[x:y: 2]| y* =22+ 2°} N Hoo = {[1:1: 0], [1: —1: 0]}

These are the points where the lines y = and y = —x intersect the curve.



10.2 Projective algebraic sets.

Definition 10.9. Let P"(k) be a projective n-space over k. A point P € IP"(k) is said to be a
zero of a polynomial f € klxy, ...,z 1] if f(x1,...,2,11) =0 for every choice of homogenous
coordinated for P; we then write f(P)=0.



Definition 10.10. A polynomial f € k[x1, ..., x,,11] is called a form of degree d if it is a sum
of monomials of degree d:

_ 1 tn41 : : ==
f= E Oyt et T 11+ ... +ipr1=d.
(61,000 in 1) €S CNAF1






Remark 10.12. Let IP"(k) be a projective n-space over k, let P € P™(k). If f € k[zq, ...,
T+ 1]is a form of degree d and f vanishes at one representative of P, then it vanishes at every
representative of P.



Definition 10.13. Let P"(k) be a projective n-space over k. A projective algebraic set V is
a subset of the projective n-space P" (k) consisting of all common zeros of some set of forms
S g k[ﬂ?l, coon Zl?n_|_1].'

V =Alai:...;an+1] € P™(Ek)| f(a1,...,an+1) =0 forall feS}.

We shall call the set V to be defined by the set of forms S and denote by V = Z(S).



Definition 10.14. An ideal a < k|z1,...xy 11| is called homogeneous if for every [ € a, if

F=3 5@,
d=0

where ' is a form of degree d, then also %), .... ") cq.






Remark 10.16. Let S C k[x1, ..., x,,+1] be a set of forms and let a be the homogenous ideal
of klxy,..., 2,11 generated by S. Then






Remark 10.18. Let P"(k) be a projective n-space over k, let V' C P"(k) be a projective
algebraic set. The set Z(V) of all polynomials whose common zeros coincide with V"

Z(V)={f€klzs,...,xns1]| fla,...,ant1) =0 for all [ay:...:an11] €V}

is a homogenous ideal of k|xq,...,x,].



Definition 10.19. Let P"(k) be a projective n-space over k, let V. C IP"™(k) be a projective
algebraic set. The ideal Z(V') consisting of polynomials whose common zeros constitute V shall
be called the ideal of the projective algebraic set V.



Remark 10.20. Let P"(k) be a projective n-space over k, let V', V;, V5 C P™(k) be projective
algebraic sets, let a, a;, as be homogenous ideals of k|x1, ..., 2, 1+1]. Then:

1. a1 Cax= Z(a1) 2 Z(az),
2. Z(Z(a)) 2,

3. Z(Z(V)) =V,

4. Vi CVoeZ(V4) DI(Va),
5. =V & I(W1) =I(V2).



10.3 Projective algebraic varietes.

Definition 10.21. Let P"(k) be a projective n-space over k. A nonempty projective algebraic
set V CIP"(k) will be called a projective algebraic variety if the homogenous ideal Z(V') of
the ring klx1, ..., xp11] is prime.



Definition 10.22. Let IP"(k) be a projective n-space over k. A nonempty projective algebraic
set V. CIP"™(k) will be called irreducible, if for projective algebraic sets A, B CIP"(k):

V=AUB=V=AVV=B8B.



Theorem 10.23. Let IP"(k) be a projective n-space over k. A nonempty projective algebraic
set V. CIP™(k) is irreducible if and only if it is a projective algebraic variety.



Theorem 10.24. Let P"(k) be a projective n-space over k. Every projective algebraic set V is
a finite sum of projective algebraic varieties:

V=1U..UV., r>1.

If in the above decomposition the varieties V; are incomparable (that is V; ¢ V; for i % j), then
they are uniquely defined.



10.4 Projective Nulistellensatz.

Definition 10.25. Let P"(k) be a projective n-space over k, let V C IP"(k) be a projective
algebraic set. The set

C(V)=A(x1,..., Tny1) EE™|[x1:....2,) €V }U{(0,...,0)}

will be called the cone over V.



Notation 10.26. To avoid confucion when necessary, we shall write Z,(1) and Z,(V') for affine
operations and Z,(I) and Z,,(V') for projective operations.



Remark 10.27. Let P"(k) be a projective n-space over k, let V' C P"™(k) be a nonempty
projective algebraic set. Then



Corollary 10.28. (projective Nullstellensatz) Let k be algebraically closed, let a < k[x1, ...,
Tn+1| be a homogeneous ideal. Then:

1. Z,(a) =10 if and only if there is an integer N such that a contains all forms of degree >N,
2. if Z,(a)#0, then Z,(Z,(a)) =rad(a).



10.5 Zariski topology.

Lemma 10.29. A finite sum of profective algebraic sets is a projective algebraic set. To be more
precise, let a1, ..., a,, be homogenous ideals of the ring k|z1, ...,x,+1]. Then

Z(a)U...UZ(am)=2(a1 ... am),

where aq - ... Q= {Zleailaig...aim| k ElN,aij = Clj,j c {1, ...,m},iE {1, ,k}}






Lemma 10.31. Intersection of any number of projective algebraic sets is a projective algebraic
set. To be more precise, let {a;|i € I} be a family of homogenous ideals of the ring k|x1, ...,

Tpa1|. Then









Definition 10.34. The topology of P"(k) defined by projective algebraic sets is called the
Zariski topology in P" (k).



