Remark 9.2. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a rational map, $f = (f_1, ..., f_m)$ with $f_1, ..., f_m \in k(V)$. There exists an open set $\emptyset \neq U \subseteq V$ such that $f_1 \upharpoonright_U, ..., f_m \upharpoonright_U$ are regular on U. In other words, we can think of rational maps as defined on open subsets.

Remark 9.3. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f_1, ..., f_m \in k(V)$. Then $f_1, ..., f_m \in k(V)$ f_m define a rational map $f: V \to W$.

Remark 9.4. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a rational map and assume that f(V) is dense in W. The map f defines a field embedding $f^*: k(W) \to k(V)$.

Definition 9.5. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a rational map such that f(V) is dense in W. The map f is a **birational equivalence** if there is a rational map $g: W \to V$ such that g(W) is dense in V and

$$f \circ g = 1_W$$
 and $g \circ f = 1_V$.

In this case we say that V and W are birationally equivalent or birational.

Corollary 9.6. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes. Then V and W are birationally equivalent if and only if $k(V) \cong k(W)$.

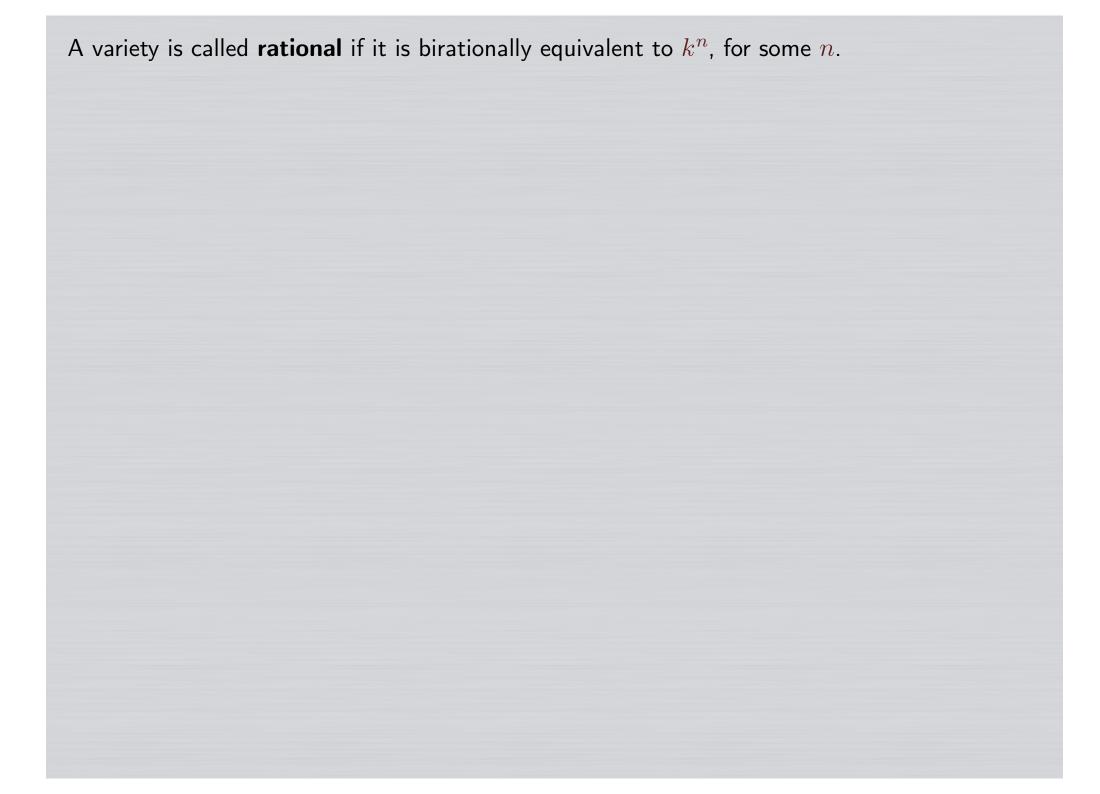
Example 9.7. Let $V = \mathcal{Z}(xy-1)$ and $W = \mathcal{Z}(y)$, let $f: V \to W$ be given by $(x,y) \mapsto (x,0)$. This is a birational equivalence, but not an isomorphism.

Example 9.8. Let $V = \mathcal{Z}(y)$ and $W = \mathcal{Z}(y^2 - x^3)$, let $f: V \to W$ be given by $(x,0) \mapsto (x^2,x^3)$. This is a birational equivalence (the inverse map $g: W \to V$ being $(x,y) \mapsto \left(\frac{y}{x},0\right)$), but not an isomorphism.

Proposition 9.9. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a birational equivalence. Then there exist open subsets $U \subseteq V$ and $U' \subseteq W$ which are isomorphic.

Proposition 9.10. (Noether normalization lemma) Let k be algebraically closed, and $k \subseteq K$ a finitely generated field extension. Then there exist elements $z_1, ..., z_{d+1} \in K$ with $K = k(z_1, ..., z_{d+1})$ such that $z_1, ..., z_d$ are algebraically independent over k, and z_{d+1} is separable over $k(z_1, ..., z_{d+1})$.

Proposition 9.11. Let $V \subseteq k^n$ be an affine variety. Then V is birationally equivalent to a hypersurface of some affine space k^m .



10 Projective space. Projective algebraic sets.

10.1 Projective space.

The concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of an Euclidean space in such a way that there is one point at infinity for each direction of parallel lines.

Consider the affine plane k^2 . Each point $(x,y) \in k^2$ can be idetified with the point $(x,y,1) \in k^3$. Every point $(x,y,1) \in k^3$ determines a line in k^3 that passes through (0,0,0) and (x,y,1). Every line through (0,0,0) except those lying on the plane z=0 corresponds to exactly one such point. The lines through (0,0,0) in the plane z=0 can be thought of as corresponding to the "points at infinity".

Definition 10.1. Let k be a field. **Projective** n-space over k, written $\mathbb{P}^n(k)$, is defined to be the set of all lines through $(0,...,0) \in k^{n+1}$. Any point $(x_1,...,x_{n+1}) \neq (0,...,0)$ determines a unique such line, namely $\{(\lambda x_1,...,\lambda x_{n+1}) | \lambda \in k\}$. Elements of $\mathbb{P}^n(k)$ are called **points**. If a point $P \in \mathbb{P}^n(k)$ is determined as above by some $(x_1,...,x_{n+1}) \in k^{n+1} \setminus \{(0,...0)\}$, we say that $(x_1,...,x_{n+1})$ are the **homogeneous coordinates** of P and write $P = [x_1:...:x_{n+1}]$.

Remark 10.2. Let $\mathbb{P}^n(k)$ be a projective n-space over k. Two points $(x_1,...,x_{n+1}), (y_1,...,y_{n+1}) \in k^{n+1}$ determine the same line is and only if there is a nonzero $\lambda \in k$ such that $x_1 = \lambda y_1, ..., x_{n+1} = \lambda y_{n+1}$. Let us say that $(x_1,...,x_{n+1}), (y_1,...,y_{n+1}) \in k^{n+1}$ are equivalent if this is the case. Then $\mathbb{P}^n(k)$ may be identified with the set of equivalence classes of points $k^{n+1} \setminus \{(0,...0)\}$.

Remark 10.3. Let $\mathbb{P}^n(k)$ be a projective n-space over k and let $P \in \mathbb{P}^n(k)$, $P = [x_1: ...: x_{n+1}]$. Note that the i-th coordinate x_i is not well-defined, but that it is a well-defined notion to say whether the i-th coordinate is zero or nonzero. If $x_i \neq 0$ the ratios x_j/x_i are well-defined, since they are unchanged under the abovedescribed equivalence.

Definition 10.4. Let $\mathbb{P}^n(k)$ be a projective n-space over k. Let

$$U_i = \{ [y_1: ...: y_{n+1}] \in \mathbb{P}^n(k) | y_i \neq 0 \}$$

Each $P \in U_i$ can be written uniquely in the form

$$P = [x_1: ...: x_{i-1}: 1: x_{i+1}: ...: x_{n+1}].$$

The coordinates $(x_1,...,x_{i-1},x_{i+1},...,x_{n+1})$ are called the **nonhomogeneous coordinates** of P with respect to U_i .

Remark 10.5. Let $\mathbb{P}^n(k)$ be a projective *n*-space over k. Define $\varphi_i: k^n \to U_i$ by

$$\varphi_i(x_1, ..., x_n) = [x_1: ...: x_{i-1}: 1: x_{i+1}: ...: x_n].$$

Then φ_i defines a bijective correspondence between k^n and U_i . Note that $\mathbb{P}^n(k) = \bigcup_{i=1}^{n+1} U_i$, so that $\mathbb{P}^n(k)$ is covered by n+1 bijective copies of k^n .

Definition 10.6. Let $\mathbb{P}^n(k)$ be a projective n-space over k. The set

$$H_{\infty} = \mathbb{P}^{n}(k) \setminus U_{n+1} = \{ [x_1: ...: x_{n+1}] | x_{n+1} = 0 \}$$

is called the **hyperplane at infinity**.

Remark 10.7. Let $\mathbb{P}^n(k)$ be a projective *n*-space over k. The map $H_{\infty} \to \mathbb{P}^{n-1}(k)$ given by

$$[x_1: \ldots: x_n: 0] \mapsto [x_1: \ldots: x_n]$$

is bijective. Thus H_{∞} may be identified with $\mathbb{P}^{n-1}(k)$ and $\mathbb{P}^n(k) = U_{n+1} \cup H_{\infty}$ is the union of an affine n-space and a set that gives all directions in affine n-space.

Example 10.8.

- 1. $\mathbb{P}^0(k)$ is a point.
- 2. $\mathbb{P}^1(k) = \{[x:1] | x \in k\} \cup \{[1:0]\}$ is the affine line plus one point at infinity. We call it **projective line** over k.
- 3. $\mathbb{P}^2(k) = \{[x:y:1] | x, y \in k\} \cup \{[x:y:0] | [x:y] \in \mathbb{P}^1(k)\}$. Here H_{∞} is called the **line at infinity.** $\mathbb{P}^2(k)$ is called the **projective plane** over k.
- 4. Consider a line ℓ : y = ax + b in k^2 . If we identify k^2 with $U_3 \subseteq \mathbb{P}^2(k)$, the points on the line ℓ correspond to the points $\{[x:y:z] | y = ax + bz \text{ and } z \neq 0\} \in \mathbb{P}^2(k)$. Then

$$\{[x:y:z]|\ y=ax+bz\}\cap H_{\infty}=\{[1:a:0]\},$$

so that all lines with the same slope a, when extended that way, pass through the same point at infinity.

5. Consider the curve $C: y^2 = x^2 + 1$ in k^2 . The corresponding set in $\mathbb{P}^2(k)$ is given by the equation $y^2 = x^2 + z^2$, $z \neq 0$. Thus

$$\{[x:y:z]|\ y^2=x^2+z^2\}\cap H_\infty=\{[1:1:0],[1:-1:0]\}.$$

These are the points where the lines y = x and y = -x intersect the curve.

10.2 Projective algebraic sets.

Definition 10.9. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A point $P \in \mathbb{P}^n(k)$ is said to be a **zero** of a polynomial $f \in k[x_1, ..., x_{n+1}]$ if $f(x_1, ..., x_{n+1}) = 0$ for every choice of homogenous coordinated for P; we then write f(P) = 0.

Definition 10.10. A polynomial $f \in k[x_1, ..., x_{n+1}]$ is called a **form** of degree d if it is a sum of monomials of degree d:

$$f = \sum_{(i_1, \dots, i_{n+1}) \in S \subseteq \mathbb{N}^{n+1}} a_{i_1 \dots i_{n+1}} x_1^{i_1} \dots x_{n+1}^{i_{n+1}}, \qquad i_1 + \dots + i_{n+1} = d.$$

Remark 10.11. A polynomnial $f \in k[x_1, ..., x_{n+1}]$ is a form of degree d if and only if

$$f(ab_1, ..., ab_{n+1}) = a^d f(b_1, ..., b_{n+1}),$$

for all $a, b_1, ..., b_{n+1} \in k$.

Remark 10.12. Let $\mathbb{P}^n(k)$ be a projective n-space over k, let $P \in \mathbb{P}^n(k)$. If $f \in k[x_1, ..., x_{n+1}]$ is a form of degree d and f vanishes at one representative of P, then it vanishes at every representative of P.

Definition 10.13. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A **projective algebraic set** V is a subset of the projective n-space $\mathbb{P}^n(k)$ consisting of all common zeros of some set of forms $S \subseteq k[x_1,...,x_{n+1}]$:

$$V = \{ [a_1: ...: a_{n+1}] \in \mathbb{P}^n(k) | f(a_1, ..., a_{n+1}) = 0 \text{ for all } f \in \mathcal{S} \}.$$

We shall call the set V to be defined by the set of forms S and denote by $V = \mathcal{Z}(S)$.

Definition 10.14. An ideal $\mathfrak{a} \triangleleft k[x_1,...x_{n+1}]$ is called **homogeneous** if for every $f \in \mathfrak{a}$, if

$$f = \sum_{d=0}^{m} f^{(d)},$$

where $f^{(d)}$ is a form of degree d, then also $f^{(0)},...,f^{(m)} \in \mathfrak{a}$.

Proposition 10.15. An ideal $\mathfrak{a} \triangleleft k[x_1,...,x_{n+1}]$ is homogeneous if and only if it is generated by a finite set of forms.

Remark 10.16. Let $S \subseteq k[x_1, ..., x_{n+1}]$ be a set of forms and let \mathfrak{a} be the homogenous ideal of $k[x_1, ..., x_{n+1}]$ generated by S. Then

$$\mathcal{Z}(\mathcal{S}) = \mathcal{Z}(\mathfrak{a}).$$

Remark 10.17. Let $S \subseteq k[x_1,...,x_{n+1}]$ be a set of forms. Then there exists a finite set of forms $\{f_1,...,f_r\}\subseteq k[x_1,...,x_{n+1}]$ such that

$$\mathcal{Z}(\mathcal{S}) = \mathcal{Z}(f_1, ..., f_r).$$

Remark 10.18. Let $\mathbb{P}^n(k)$ be a projective n-space over k, let $V \subseteq \mathbb{P}^n(k)$ be a projective algebraic set. The set $\mathcal{I}(V)$ of all polynomials whose common zeros coincide with V:

$$\mathcal{I}(V) = \{ f \in k[x_1, ..., x_{n+1}] | f(a_1, ..., a_{n+1}) = 0 \text{ for all } [a_1: ...: a_{n+1}] \in V \}$$

is a homogenous ideal of $k[x_1,...,x_n]$.

Definition 10.19. Let $\mathbb{P}^n(k)$ be a projective n-space over k, let $V \subseteq \mathbb{P}^n(k)$ be a projective algebraic set. The ideal $\mathcal{I}(V)$ consisting of polynomials whose common zeros constitute V shall be called the **ideal of the projective algebraic set** V.

Remark 10.20. Let $\mathbb{P}^n(k)$ be a projective n-space over k, let $V, V_1, V_2 \subseteq \mathbb{P}^n(k)$ be projective algebraic sets, let $\mathfrak{a}, \mathfrak{a}_1, \mathfrak{a}_2$ be homogenous ideals of $k[x_1, ..., x_{n+1}]$. Then:

- 1. $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \Rightarrow \mathcal{Z}(\mathfrak{a}_1) \supseteq \mathcal{Z}(\mathfrak{a}_2)$,
- 2. $\mathcal{I}(\mathcal{Z}(\mathfrak{a})) \supseteq \mathfrak{a}$,
- 3. $\mathcal{Z}(\mathcal{I}(V)) = V$,
- 4. $V_1 \subseteq V_2 \Leftrightarrow \mathcal{I}(V_1) \supseteq \mathcal{I}(V_2)$,
- 5. $V_1 = V_2 \Leftrightarrow \mathcal{I}(V_1) = \mathcal{I}(V_2)$.

10.3 Projective algebraic varietes.

Definition 10.21. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A nonempty projective algebraic set $V \subseteq \mathbb{P}^n(k)$ will be called a **projective algebraic variety** if the homogenous ideal $\mathcal{I}(V)$ of the ring $k[x_1,...,x_{n+1}]$ is prime.

Definition 10.22. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A nonempty projective algebraic set $V \subseteq \mathbb{P}^n(k)$ will be called **irreducible**, if for projective algebraic sets $A, B \subseteq \mathbb{P}^n(k)$:

$$V = A \cup B \Rightarrow V = A \lor V = B$$
.

Theorem 10.23. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A nonempty projective algebraic set $V \subseteq \mathbb{P}^n(k)$ is irreducible if and only if it is a projective algebraic variety.

Theorem 10.24. Let $\mathbb{P}^n(k)$ be a projective n-space over k. Every projective algebraic set V is a finite sum of projective algebraic varieties:

$$V = V_1 \cup \ldots \cup V_r, \quad r \ge 1.$$

If in the above decomposition the varieties V_i are incomparable (that is $V_i \not\subset V_j$ for $i \neq j$), then they are uniquely defined.

10.4 Projective Nullstellensatz.

Definition 10.25. Let $\mathbb{P}^n(k)$ be a projective n-space over k, let $V \subseteq \mathbb{P}^n(k)$ be a projective algebraic set. The set

$$C(V) = \{(x_1, ..., x_{n+1}) \in k^n | [x_1: ...: x_n] \in V\} \cup \{(0, ..., 0)\}$$

will be called the **cone** over V.

Notation 10.26. To avoid confucion when necessary, we shall write $\mathcal{Z}_a(I)$ and $\mathcal{I}_a(V)$ for affine operations and $\mathcal{Z}_p(I)$ and $\mathcal{I}_p(V)$ for projective operations.

Remark 10.27. Let $\mathbb{P}^n(k)$ be a projective *n*-space over k, let $V \subseteq \mathbb{P}^n(k)$ be a nonempty projective algebraic set. Then

$$\mathcal{I}_a(\mathcal{C}(V)) = \mathcal{I}_p(V).$$

Moreover, let $\mathfrak{a} \triangleleft k[x_1,...,x_{n+1}]$ be a homogeneous ideal such that $\mathcal{Z}_p(\mathfrak{a}) \neq \emptyset$. Then

$$\mathcal{C}(\mathcal{Z}_p(\mathfrak{a})) = \mathcal{Z}_a(\mathfrak{a}).$$

Corollary 10.28. (projective Nullstellensatz) Let k be algebraically closed, let $\mathfrak{a} \triangleleft k[x_1, ..., x_{n+1}]$ be a homogeneous ideal. Then:

- 1. $\mathcal{Z}_p(\mathfrak{a}) = \emptyset$ if and only if there is an integer N such that \mathfrak{a} contains all forms of degree $\geqslant N$;
- 2. if $\mathcal{Z}_p(\mathfrak{a}) \neq \emptyset$, then $\mathcal{I}_p(\mathcal{Z}_p(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.

10.5 Zariski topology.

Lemma 10.29. A finite sum of profective algebraic sets is a projective algebraic set. To be more precise, let $\mathfrak{a}_1,...,\mathfrak{a}_m$ be homogenous ideals of the ring $k[x_1,...,x_{n+1}]$. Then

$$\mathcal{Z}(\mathfrak{a}_1) \cup \ldots \cup \mathcal{Z}(\mathfrak{a}_m) = \mathcal{Z}(\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m),$$

where $\mathfrak{a}_1 \cdot ... \cdot \mathfrak{a}_m = \{ \sum_{i=1}^k a_{i1} a_{i2} ... a_{im} | k \in \mathbb{N}, a_{ij} \in \mathfrak{a}_j, j \in \{1, ..., m\}, i \in \{1, ..., k\} \}.$

Remark 10.30. Let $\mathfrak{a}_1,...,\mathfrak{a}_m$ be homogenous ideals of the ring $k[x_1,...,x_{n+1}]$. Then

$$\mathcal{Z}(\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m) = \mathcal{Z}(\mathfrak{a}_1 \cap \ldots \cap \mathfrak{a}_m).$$

Lemma 10.31. Intersection of any number of projective algebraic sets is a projective algebraic set. To be more precise, let $\{\mathfrak{a}_i|i\in I\}$ be a family of homogenous ideals of the ring $k[x_1,...,x_{n+1}]$. Then

$$\bigcap_{i \in I} \mathcal{Z}(\mathfrak{a}_i) = \mathcal{Z}\left(\left(\bigcup_{i \in I} \mathfrak{a}_i\right)\right).$$

Remark 10.32. Let $\mathfrak{a}_1,...,\mathfrak{a}_m$ be homogenous ideals of the ring $k[x_1,...,x_{n+1}]$. Then

$$\mathcal{Z}(\mathfrak{a}_1 + ... + \mathfrak{a}_m) = \mathcal{Z}(\langle \mathfrak{a}_1 \cup ... \cup \mathfrak{a}_m \rangle).$$

Theorem 10.33. In $\mathbb{P}^n(k)$ there is a topology whose closed sets are projective algebraic sets in $\mathbb{P}^n(k)$.

Definition 10.34. The topology of $\mathbb{P}^n(k)$ defined by projective algebraic sets is called the **Zariski topology** in $\mathbb{P}^n(k)$.