9 Rational maps of affine algebraic sets. Birational equivalence of affine algebraic sets.

Definition 9.1. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes. A rational map $f: V \to W$ is a map such that there exist $f_1, ..., f_m \in k(V)$ such that $f(a) = (f_1(a), ..., f_m(a))$, for all the points $a \in V$ where all the rational functions $f_1, ..., f_m \in k(V)$ are defined.

Remark 9.2. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a rational map, $f = (f_1, ..., f_m)$ with $f_1, ..., f_m \in k(V)$. There exists an open set $\emptyset \neq U \subseteq V$ such that $f_1 \upharpoonright_U, ..., f_m \upharpoonright_U$ are regular on U. In other words, we can think of rational maps as defined on open subsets.

Remark 9.3. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f_1, ..., f_m \in k(V)$. Then $f_1, ..., f_m$ define a rational map $f: V \to W$.

Remark 9.4. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a rational map and assume that f(V) is dense in W. The map f defines a field embedding $f^*: k(W) \to k(V)$.

Definition 9.5. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a rational map such that f(V) is dense in W. The map f is a **birational equivalence** if there is a rational map $g: W \to V$ such that g(W) is dense in V and

 $f \circ g = 1_W$ and $g \circ f = 1_V$.

In this case we say that V and W are **birationally equivalent** or **birational**.

Corollary 9.6. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes. Then V and W are birationally equivalent if and only if $k(V) \cong k(W)$.

Example 9.7. Let $V = \mathcal{Z}(xy-1)$ and $W = \mathcal{Z}(y)$, let $f: V \to W$ be given by $(x, y) \mapsto (x, 0)$. This is a birational equivalence, but not an isomorphism. **Example 9.8.** Let $V = \mathcal{Z}(y)$ and $W = \mathcal{Z}(y^2 - x^3)$, let $f: V \to W$ be given by $(x, 0) \mapsto (x^2, x^3)$. This is a birational equivalence (the inverse map $g: W \to V$ being $(x, y) \mapsto (\frac{y}{x}, 0)$), but not an isomorphism. **Proposition 9.9.** Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine varietes, let $f: V \to W$ be a birational equivalence. Then there exist open subsets $U \subseteq V$ and $U' \subseteq W$ which are isomorphic.

Proposition 9.10. (Noether normalization lemma) Let k be algebraically closed, and $k \subseteq K$ a finitely generated field extension. Then there exist elements $z_1, ..., z_{d+1} \in K$ with $K = k(z_1, ..., z_{d+1})$ such that $z_1, ..., z_d$ are algebraically independent over k, and z_{d+1} is separable over $k(z_1, ..., z_{d+1})$.

Proposition 9.11. Let $V \subseteq k^n$ be an affine variety. Then V is birationally equivalent to a hypersurface of some affine space k^m .

A variety is called **rational** if it is birationally equivalent to k^n , for some n.