- 7 Coordinate ring of an affine algebraic set. Morphisms of affine algebraic sets. Category of affine algebraic sets.
- 7.1 Coordinate ring of an affine algebraic set.

Definition 7.1. Let k be a field, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. The ring $k[V] := k[x_1, ..., x_n]/\mathcal{I}(V)$ is called the **coordinate ring** of V.

Remark 7.2. Let k be a field, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. Let $f \in k[x_1, ..., x_n]$. The polynomial f defines a polynomial function $k^n \to k$. Let f_V be the restriction of f to the set V, $f_V = f \upharpoonright_V$. Then $f_V = g_V$ if and only if $f + \mathcal{I}(V) = g + \mathcal{I}(V)$.

Remark 7.3. Let k be a field, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. Let κ : $k[x_1,...,x_n] \to k[V]$ be the canonical epimorphism, $\kappa(f) = \overline{f} := f + \mathcal{I}(V)$. Then k[V] is a k-ring finitely generated over k by $\overline{x_1},...,\overline{x_2}$.

Remark 7.4. Let k be algebraically closed, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. Then k[V] has no nonzero nilpotents.

Theorem 7.5. Let k be algebraically closed. Then a k-ring A is isomorphic to a coordinate ring of an affine algebraic set $V \subseteq k^n$ if and only if it is finitely generated over k and has no nonzero nilpotents.

Example 7.6.

- $V = k^n$, $k[V] \cong k[x_1, ..., x_n]$;
- $V = \emptyset$, $k[V] \cong 0$;
- $V = \{(a_1, ..., a_n)\}, k[V] \cong k.$

Example 7.7. $V = \mathcal{Z}(f)$, $f \in k[x_1, ..., x_n]$ is square-free. $k[V] \cong k[x_1, ..., x_n] / (f) \cong k[\alpha_1, ..., \alpha_n]$ where $f(\alpha_1, ..., \alpha_n) = 0$.

Example 7.8. $V = \mathcal{Z}(a_1x_1 + ... + a_nx_n - b)$, $k[V] \cong k[x_1, ..., x_{n-1}]$.

7.2 Basic notions in category theory.

Definition 7.9. A category \mathcal{C} consists of a class of objects $\mathrm{Ob}(\mathcal{C})$, denoted by A, B, C, ... and a class of morphisms (or arrows) $\mathrm{Ar}(\mathcal{C})$ together with:

- 1. classes of pairwise disjoint arrows $\operatorname{Hom}(A,B)$, one for each pair of objects $A,B \in \operatorname{Ob}(\mathcal{C})$; and elements f of the class $\operatorname{Hom}(A,B)$ shall be called a **morphism** from A to B and denoted by $A \stackrel{f}{\longrightarrow} B$ or $f: A \rightarrow B$,
- 2. functions $\operatorname{Hom}(B,\,C) \times \operatorname{Hom}(A,\,B) \to \operatorname{Hom}(A,\,C)$, for each triple of objects $A,\,B,\,C \in \operatorname{Ob}(\mathcal{C})$, called **composition** of morphisms; for morphisms $A \overset{f}{\longrightarrow} B$ and $B \overset{g}{\longrightarrow} C$ values of this function shall be denoted by $(g,\,f) \mapsto g \circ f$, and the morphism $A \overset{g \circ f}{\longrightarrow} C$ shall be called the composition of morphisms $A \overset{f}{\longrightarrow} B$ and $B \overset{g}{\longrightarrow} C$.

Moreover, we require that the following two axioms hold true:

Associativity. If $A \stackrel{f}{\longrightarrow} B$, $B \stackrel{g}{\longrightarrow} C$ and $C \stackrel{h}{\longrightarrow} D$ are morphisms in C, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Identity. For every object $B \in \mathrm{Ob}(\mathcal{C})$ there exists a morphism $B \xrightarrow{1_B} B$ such that for all morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$

$$1_B \circ f = f$$
 and $g \circ 1_B = g$.

If the classes $\mathrm{Ob}(\mathcal{C})$ and $\mathrm{Ar}(\mathcal{C})$ are sets, we shall call the category \mathcal{C} small. If all classes $\operatorname{Hom}(A,B)$ are sets, we shall call the category ${\mathcal C}$ locally small.

Example 7.10.

- 1. We shall set the notation for a number of familiar categories here:
 - Set is the category of sets with functions as morphisms;
 - Grp is the category of groups with group homomorphisms as morphisms;
 - Top is the category of topological spaces with continuous functions as morphisms.
 - Ab is the category of Abelian groups;
 - Rng is the category of rigns;
 - Field is the category of fields;
 - k Vect is the category of k vector spaces;
 - $k Alg_{fg}^0$ is the category of finitely generated k-algebras over an algebraically closed field k with no nonzero nilpotent elements.

All these categories are locally small, but not small.

2. The notion of a category allows for a different take on familiar constructions in mathematics. For example, consider a partial order (P, \leq) . One checks that considering the elements of P as objects, and defining morphisms by

$$a \rightarrow b \qquad \Leftrightarrow \qquad a \leqslant b$$

one obains a category, which is small provided P is a set.

3. Posetal category of a topological space. A special case of the above construction that we shall frequently use is the following one. Let (X,τ) be a topological space. In particular, (τ,\subseteq) is a partial order which, viewed as a category, shall be denoted by $\mathcal{O}(X)$ and called the posetal category of the space (X,τ) .

Definition 7.11. Let \mathcal{C} be a category. If, for two objects $A, B \in \mathrm{Ob}(\mathcal{C})$ there exist morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} A$ such that

$$f \circ g = 1_B$$
 and $g \circ f = 1_A$

then we say that objects A and B are **isomorphic** and write $A \cong B$.

Definition 7.12. Let \mathcal{C} and \mathcal{D} be categories. A **covariant functor** F from \mathcal{C} to \mathcal{D} is a pair of maps $\mathrm{Ob}(\mathcal{C}) \to \mathrm{Ob}(\mathcal{D})$ and $\mathrm{Ar}(\mathcal{C}) \to \mathrm{Ar}(\mathcal{D})$ (denoted by the same symbol F), that assign to each object $A \in \mathrm{Ob}(\mathcal{C})$ an object $F(A) \in \mathrm{Ob}(\mathcal{D})$ and to each morphism $A \xrightarrow{f} B$ in $\mathrm{Ar}(\mathcal{C})$ a morphism $F(A) \xrightarrow{F(f)} F(B)$ in $\mathrm{Ar}(\mathcal{D})$ in a way that the following two axioms are satisfied:

- 1. $F(1_A) = 1_{F(A)}$, for every object $A \in Ob(\mathcal{C})$;
- 2. $F(g \circ f) = F(g) \circ F(f)$, for all arrows $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ in Ar(C).

A **contravariant functor** is defined in an analogous way, but to each morphism $A \xrightarrow{f} B$ in $\operatorname{Ar}(\mathcal{C})$ a morphism $F(B) \xrightarrow{F(f)} F(A)$ in $\operatorname{Ar}(\mathcal{D})$ is assigned and the axiom 2. is replaced with:

2'. $F(g \circ f) = F(f) \circ F(g)$, for all arrow $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ in Ar(C).

Example 7.13.

1. **Identity functors.** For every category \mathcal{C} the map $I_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ given by

$$I_{\mathcal{C}}(A) = A$$
, for every object $A \in \mathrm{Ob}(\mathcal{C})$, $I_{\mathcal{C}}(f) = f$, for every morphism $A \xrightarrow{f} B$ in \mathcal{C}

is a covariant functor that shall be called the identity functor.

2. Forgetful functors. The map $F: \mathcal{G}rp \to \mathcal{S}et$ given by

$$F(G) = G$$
, for every object $G \in \text{Ob}(\mathcal{G}\text{rp})$, $F(f) = f$, for every morphism $G \xrightarrow{f} H$ in $\mathcal{G}\text{rp}$

is a covariant functor that shall be called the forgetful functor. In the same way we can define forgetful functors $\mathcal{R}ng \to \mathcal{S}et$, $\mathcal{T}op \to \mathcal{S}et$ etc.

3. Free functors. The map $F: \mathcal{S}et \to \mathcal{A}b$ given by

F(X) = free Abelian group with basis X, for every object $X \in Ob(\mathcal{A}b)$,

and

 $F(f) = \text{ the uniquely defined morphism } \overline{f} \text{ s.t. } \overline{f} \upharpoonright_X = f, \text{ for every morphism } X \xrightarrow{f} Y$ in \mathcal{S} et

is a covariant functor that creates free Abelian groups. In the same way we can define free fuctors $\mathcal{S}\mathrm{et} \to \mathcal{G}\mathrm{rp}$ etc.

4. For a category \mathcal{C} we define the **opposite category** \mathcal{C}^{op} as follows: $Ob(\mathcal{C}^{op}) = Ob(\mathcal{C})$, and for $A, B \in Ob(\mathcal{C}^{op})$

$$\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A,B) = \operatorname{Hom}_{\mathcal{C}}(B,A)$$

and

$$f^{\mathrm{op}} \circ g^{\mathrm{op}} = (g \circ f)^{\mathrm{op}}$$
.

For example if C consists of the following objects and morphisms:

$$A \rightarrow B \rightarrow C \rightarrow D$$
,

then C^{op} is of the following form:

$$A \leftarrow B \leftarrow C \leftarrow D$$
.

If $F: \mathcal{C} \to \mathcal{D}$ is a contravariant functor, then $\overline{F}: \mathcal{C}^{\mathrm{op}} \to \mathcal{D}$ defined by

$$\bar{F}(A) = F(A)$$
, for every object $A \in \text{Ob}(\mathcal{C}^{\text{op}})$, $\bar{F}(f^{\text{op}}) = F(f)$, for every morphism $A \xrightarrow{f} B$ in \mathcal{C}

is a covariant functor.

Definition 7.14. Let \mathcal{C} and \mathcal{D} be categories. A covariant functor $F: \mathcal{C} \to \mathcal{D}$ is **faithful** if for all objects $A, B \in \mathrm{Ob}(\mathcal{C})$ the induced function

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F(A),F(B))$$

is injective. If, moreover, it is surjective, then F shall be called **fully faithful**.

Proposition 7.15. Let \mathcal{C} and \mathcal{D} be categories, let $F: \mathcal{C} \to \mathcal{D}$ be a fully faithful functor. Then, for all objects $A, B \in Ob(\mathcal{C})$, $A \cong B$ if and only if $F(A) \cong F(B)$.

Definition 7.16. Let \mathcal{C} and \mathcal{D} be categories. A covariant functor $F \colon \mathcal{C} \to \mathcal{D}$ is called a **equivalence of categories** if it is fully faithful and essentially surjective, that is for every object $B \in \mathrm{Ob}(\mathcal{D})$ there is an object $A \in \mathrm{Ob}(\mathcal{C})$ such that F(C) = D.

7.3 Category of affine algebraic sets.

Definition 7.17. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets. A **morphism** $f: V \to W$ is a map such that there exist $f_1, ..., f_m \in k[V]$ such that $f(a) = (f_1(a), ..., f_m(a))$, for all $a \in V$.

Remark 7.18. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets, let $f_1, ..., f_m \in k[V]$. Then $f = (f_1, ..., f_m): V \to W$ is a morphism if and only if

$$g(f_1, ..., f_m) = 0 \in k[V]$$
 for all $g \in \mathcal{I}(W)$.

Example 7.19.

- Let $f \in k[V]$. Then $f: V \to k$ is a morphism.
- Let $f: k^n \to k^m$ be a linear map. Then f is a morphism.
- Let $f: \mathbb{Z}(xy-1) \to k$ be given by f(x,y) = x. Then f is a morphism.
- Let $f: k \to \mathcal{Z}(y^2 x^3)$ be given by $f(t) = (t^2, t^3)$. Then f is a morphism.

Example 7.20. One easily checks that:

- $\mathcal{Z}(y-x^k)\cong k$ via f(x,y)=x and $g(t)=(t,t^k)$;
- $f: \mathcal{Z}(xy-1) \to k$ given by f(x,y) = x is not an isomorphism;
- $f: k \to \mathbb{Z}(y^2 x^3)$ given by $f(t) = (t^2, t^3)$ is not an isomorphism, even though it is a bijection.

We shall write $k - \mathcal{A}$ ff for the category k with morphisms defined above.	of affine algebraic sets over an algebraically closed field

Theorem 7.21. Let k be algebraically closed and consider the categories k - Aff and $k - Alg_{fg}^0$. The assignment

$$F(V) = k[V]$$
 for an affine algebraic set $V \subseteq k^n$

and

$$F(\varphi) = \varphi^*$$
 for a morphism of affine algebraic sets $\varphi: V \to W$,

where $\varphi^*: k[W] \to k[V]$ is given by the formula

$$\varphi^*(f) = g \circ \varphi$$

defines an equivalence of categories $k - \mathcal{A}ff^{op}$ and $k - \mathcal{A}lg_{fg}^{0}$.