2 Primary decomposition.

2.1 Primary decomposition.

Remark 2.1. Consider the ring \mathbb{Z} and an element $n \in \mathbb{Z}$. Then there exist uniquely determined prime numbers $p_1, ..., p_m$ and exponents $k_1, ..., k_m \in \mathbb{N}$ such that

$$n = \pm p_1^{k_1} \cdot \ldots \cdot p_m^{k_m}$$

or, equivalently:

$$(n) = (p_1^{k_1}) \cdot \ldots \cdot (p_m^{k_m}) = (p_1^{k_1}) \cap \ldots \cap (p_m^{k_m}).$$

Definition 2.2. Let R be any ring. An ideal $\mathfrak{q} \triangleleft R$ is called **primary**, if $\mathfrak{q} \neq R$ and for all $a, b \in R$

 $ab \in \mathfrak{q} \land b \notin \mathfrak{q} \Rightarrow \exists n \in \mathbb{N} \quad a^n \in \mathfrak{q}.$

Example 2.3.

- 1. Every prime ideal is primary.
- 2. An ideal in \mathbb{Z} generated by a power of a prime number is primary.
- 3. Let R be a principal ideal domain. Then \mathfrak{q} is primary if and only if $\mathfrak{q} = \mathfrak{p}^n$, for a prime ideal \mathfrak{p} .

Lemma 2.4. Let R be a ring, let $\mathfrak{q} \triangleleft R$ be a proper ideal in R. The following conditions are equivalent:

- i. q is primary,
- ii. every zero divisor in R/\mathfrak{q} is nilpotent,
- iii. the zero ideal in R/\mathfrak{q} is primary.

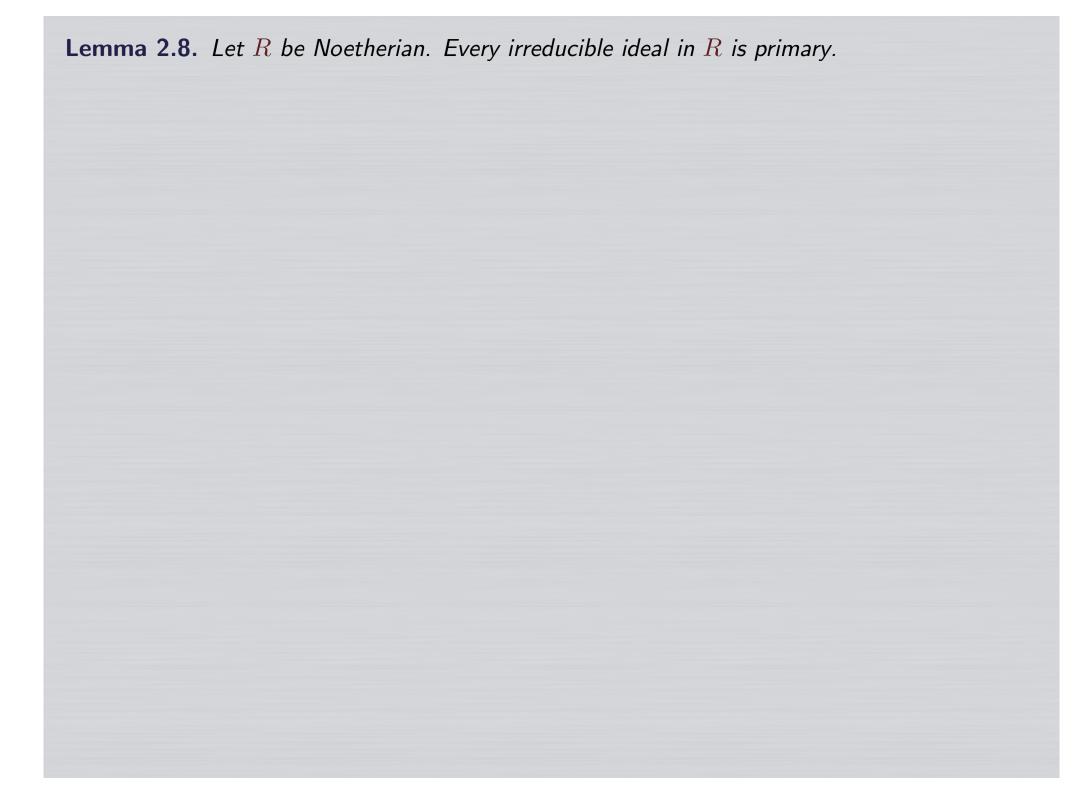
Example 2.5. The ideal $(x, y^2) \triangleleft k[x, y]$, where k is any field, is primary, but is not a power of a prime ideal.

Definition 2.6. Let R be a ring. An ideal $\mathfrak{n} \triangleleft R$, $0 \neq \mathfrak{n}$ is **irreducible** if, for all $\mathfrak{a}, \mathfrak{b} \triangleleft R$

$$\mathfrak{n} = \mathfrak{a} \cap \mathfrak{b} \Rightarrow \mathfrak{n} = \mathfrak{a} \vee \mathfrak{n} = \mathfrak{b}.$$

Example 2.7.

- 1. Every maximal ideal is irreducible.
- 2. Every prime ideal is irreducible.
- 3. An ideal $\mathfrak{n} \triangleleft R$ is irreducible if and only if the zero ideal in R/\mathfrak{n} is irreducible.



Example 2.9. The ideal $(4, 2x, x^2) \triangleleft \mathbb{Z}[x]$ is primary, but not irreducible.

Lemma 2.10. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of irreducible ideals.

Theorem 2.11. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of primary ideals.