8 Rational function field of an affine algebraic variety. Birational equivalence of affine algebraic sets.

- 1. Let V be the affine variety $\mathcal{Z}(x^2+y^2-1)\subseteq k^2$ and consider the rational function $\varphi=\frac{y+1}{x}$ on V. Determine at which points φ is regular (note: beware of $\operatorname{char}(k)$).
- 2. Is the function $\frac{x}{y}$ regular at the point (0,0) of the variety $\mathcal{Z}(x) \subseteq k^2$?
- 3. At which points of the curve C defined by $y^2 = x^2 + x^3$ is the rational function $t = \frac{y}{x}$ regular? Prove that $\frac{y}{x} \notin k[C]$.
- 4. Prove that $\mathcal{Z}(x^2+y^2-1)\subseteq k^2$ is a rational curve.
- 5. Prove that any conic section in k^2 is a rational curve.

Homework: Problems 1, 2 and 3.