7 Morphisms of affine algebraic sets. Category of affine algebraic sets. Isomorphisms of affine algebraic sets.

- 1. Prove that the hyperbola defined by xy = 1 and the line k^1 are not isomorphic as affine algebraic sets.
- 2. An isomorphism $f: V \to V$ of an affine algebraic set V is called an **automorphism**. Prove that all automorphisms of the line k^1 are of the form f(x) = ax + b with $a \neq 0$.
- 3. Prove that the map $f(x, y) = (\alpha x, \beta y + P(x))$, where $\alpha, \beta \in k^{\times}$, $P(x) \in k[x]$, is an automorphism of k^2 . Prove that all maps of that form a group. We shall call this group the group of **triangular** automorphisms.
- 4. Let V be an affine algebraic set consisting of two points. Prove that $k[V] \cong k \times k$.
- 5. Let $f: V \to W$ be a morphism of affine algebraic sets. The subset $\Gamma_f \subseteq V \times W$ consisting of all points of the form (v, f(v)) is called the **graph** of f. Prove that Γ_f is isomorphic to V.
- 6. Let char k=p. Prove that the morphism $\psi: k^n \to k^n$ given by $\psi(x_1, ..., x_n) = (x_1^p, ..., x_n^p)$ is a bijection, but not an automorphism. We shall call it the **Frobenius automorphism.**

Homework: Problems 4, 5 and 6.