
10 Projective space. Projective algebraic sets.

10.1 Projective space.

The concept of a projective space originated from the visual effect of perspective, where parallel
lines seem to meet at infinity. A projective space may thus be viewed as the extension of an
Euclidean space in such a way that there is one point at infinity for each direction of parallel lines.

Consider the affine plane k2. Each point (x, y) ! k2 can be idetified with the point (x, y, 1) ! k3.
Every point (x, y,1)!k3 determines a line in k3 that passes through (0,0,0) and (x, y,1). Every line
through (0, 0, 0) except those lying on the plane z=0 corresponds to exactly one such point. The
lines through (0,0,0) in the plane z=0 can be thought of as corresponding to the “points at infinity”.

Definition 10.1. Let k be a field. Projective n-space over k, written Pn(k), is defined to be the
set of all lines through (0, ...,0)!kn+1. Any point (x1, ...,xn+1)=/ (0, ...,0) determines a unique such
line, namely {(λx1, ...,λxn+1)|λ!k}. Elements of Pn(k) are called points. If a point P !Pn(k)
is determined as above by some (x1, ..., xn+1)! kn+1 \{(0, ...0)}, we say that (x1, ..., xn+1) are the
homogeneous coordinates of P and write P = [x1: ...:xn+1].

Remark 10.2. Let Pn(k) be a projective n-space over k. Two points (x1, ..., xn+1), (y1, ...,
yn+1)!kn+1 determine the same line is and only if there is a nonzero λ!k such that x1=λy1, ...,
xn+1=λyn+1. Let us say that (x1, ..., xn+1), (y1, ..., yn+1)! kn+1 are equivalent if this is the case.
Then Pn(k) may be identified with the set of equivalence classes of points kn+1 \ {(0, ...0)}.

Remark 10.3. Let Pn(k) be a projective n-space over k and let P !Pn(k), P =[x1: ...:xn+1]. Note
that the i-th coordinate xi is not well-defined, but that it is a well-defined notion to say whether
the i-th coordinate is zero or nonzero. If xi =/ 0 the ratios xj /xi are well-defined, since they are
unchanged under the abovedescribed equivalence.

Definition 10.4. Let Pn(k) be a projective n-space over k. Let

Ui= {[y1: ...: yn+1]!Pn(k)| yi=/ 0}

Each P !Ui can be written uniquely in the form

P = [x1: ...:xi−1: 1:xi+1: ...:xn+1].

The coordinates (x1, ..., xi−1, xi+1, ..., xn+1) are called the nonhomogeneous coordinates of P
with respect to Ui.

Remark 10.5. Let Pn(k) be a projective n-space over k. Define ϕi: kn→Ui by

ϕi(x1, ..., xn)= [x1: ...:xi−1: 1: xi+1: ...:xn].

Then ϕi defines a bijective correspondence between kn and Ui. Note that Pn(k)=
!
i=1
n+1Ui, so that

Pn(k) is covered by n+1 bijective copies of kn.

Definition 10.6. Let Pn(k) be a projective n-space over k. The set

H∞=Pn(k) \Un+1= {[x1: ...:xn+1]|xn+1=0}
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is called the hyperplane at infinity.

Remark 10.7. Let Pn(k) be a projective n-space over k. The map H∞→Pn−1(k) given by

[x1: ...:xn: 0] #→ [x1: ...:xn]

is bijective. Thus H∞ may be identified with Pn−1(k) and Pn(k)=Un+1∪H∞ is the union of an
affine n-space and a set that gives all directions in affine n-space.

Example 10.8.

1. P0(k) is a point.

2. P1(k) = {[x: 1]| x ! k} ∪ {[1: 0]} is the affine line plus one point at infinity. We call it
projective line over k.

3. P2(k)={[x: y: 1]|x, y!k}∪{[x: y: 0]| [x: y]!P1(k)}. Here H∞ is called the line at infinity.
P2(k) is called the projective plane over k.

4. Consider a line #: y= ax+ b in k2. If we identify k2 with U3⊆P2(k), the points on the line
# correspond to the points {[x: y: z]| y= ax+ bz and z=/ 0}!P2(k). Then

{[x: y: z]| y= ax+ bz}∩H∞= {[1: a: 0]},

so that all lines with the same slope a, when extended that way, pass through the same
point at infinity.

5. Consider the curve C: y2 = x2 + 1 in k2. The corresponding set in P2(k) is given by the
equation y2=x2+ z2, z=/ 0. Thus

{[x: y: z]| y2=x2+ z2}∩H∞= {[1: 1: 0], [1:−1: 0]}.

These are the points where the lines y=x and y=−x intersect the curve.

10.2 Projective algebraic sets.

Definition 10.9. Let Pn(k) be a projective n-space over k. A point P !Pn(k) is said to be a zero
of a polynomial f !k[x1, ..., xn+1] if f(x1, ..., xn+1)=0 for every choice of homogenous coordinated
for P; we then write f(P )= 0.

Definition 10.10. A polynomial f ! k[x1, ..., xn+1] is called a form of degree d if it is a sum of
monomials of degree d:

f =
∑

(i1,...,in+1)∈S⊆Nn+1

ai1...in+1x1
i1·...·xn+1

in+1, i1+ ...+ in+1= d.

Remark 10.11. A polynomnial f ! k[x1, ..., xn+1] is a form of degree d if and only if

f(ab1, ..., abn+1) = adf(b1, ..., bn+1),

for all a, b1, ..., bn+1! k.
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Proof. If f=
∑

(i1,...,in+1)∈S⊆Nn+1ai1...in+1x1
i1·...·xn+1

in+1 where i1+ ...+ in+1=d for all (i1, ..., in)!S,
then for any a, b1, ..., bn+1! k:

f(ab1, ..., abn+1) =
∑

(i1,...,in+1)∈S⊆Nn+1

ai1...in+1(ab1)
i1·...·(abn+1)in+1

=
∑

(i1,...,in+1)∈S⊆Nn+1

ai1...in+1a
i1+···+in+1b1

i1·...·bn+1in+1

= ad
∑

(i1,...,in+1)∈S⊆Nn+1

ai1...in+1b1
i1·...·bn+1in+1

= adf(b1, ..., bn+1).

Conversely, assume that f(ab1, ..., abn+1) = adf(b1, ..., bn+1), for all a, b1, ..., bn+1 ! k. Let
f =

∑
(i1,...,in+1)∈S⊆Nn+1 ai1...in+1x1

i1·...·xn+1
in+1. Then

f(ab1, ..., abn+1) =
∑

(i1,...,in+1)∈S⊆Nn+1

ai1...in+1a
i1+···+in+1b1

i1·...·bn+1in+1.

On the other hand

adf(b1, ..., bn+1)=
∑

(i1,...,in+1)∈S⊆Nn+1

ai1...in+1a
db1

i1·...·bn+1in+1,

which yields ai1+···+in+1= ad, and, consequently, i1+ ...+ in+1= d for all (i1, ..., in)!S. !

Remark 10.12. Let Pn(k) be a projective n-space over k, let P !Pn(k). If f !k[x1, ..., xn+1] is a
form of degree d and f vanishes at one representative of P , then it vanishes at every representative
of P .

Definition 10.13. Let Pn(k) be a projective n-space over k. A projective algebraic set V
is a subset of the projective n-space Pn(k) consisting of all common zeros of some set of forms
S ⊆ k[x1, ..., xn+1]:

V = {[a1: ...: an+1]!Pn(k)| f(a1, ..., an+1)= 0 for all f !S}.

We shall call the set V to be defined by the set of forms S and denote by V =Z(S).

Definition 10.14. An ideal a" k[x1, ...xn+1] is called homogeneous if for every f ! a, if

f =
∑

d=0

m

f (d),

where f (d) is a form of degree d, then also f (0), ..., f (m)! a.

Proposition 10.15. An ideal a" k[x1, ..., xn+1] is homogeneous if and only if it is generated by
a finite set of forms.

Proof. Assume that a " k[x1, ..., xn+1] is homogeneous. Since k[x1, ..., xn+1] is Noetherian,
a= 〈f1, ..., fk), for some f1, ..., fk ! k[x1, ..., xn+1]. Write fi=

∑
d=0
mi fi

(d), where fi
(d) is a form of

degree d, i!{1, ..., k}. Then fi
(d)!a, as a is homogeneous, and hence

〈
fi
(d)| i!{1, ..., k}, d!{0, ...,

max{m1, ...,mk}}
〉
⊆a. But as every element of a is a combination of f1, ..., fk which, in turn, are

combinations of fi
(d)| i! {1, ..., k}, d! {0, ...,max {m1, ...,mk}}, the other inclusion also holds.

36



Conversely, assume that a=
〈
f1
(d1), ..., fk

(dk)
〉
, where fi

(di)!k[x1, ..., xn+1] is a form of degree di. Let
f ! a. Write f =

∑
i=m
r fi, where deg fi= i. It suffices to show that fm!a, for then f − fm!a and

an inductive argument finishes the proof. Write f=
∑

i=1
k ai·fi

(di), for some a1, ...,ak!k[x1, ...,xn+1].
Comparing terms with the same degree we conclude that fm=

∑
i∈{i|di=m} ai·fi

(di), so fm! a. !

Remark 10.16. Let S ⊆ k[x1, ..., xn+1] be a set of forms and let a be the homogenous ideal of
k[x1, ..., xn+1] generated by S. Then

Z(S)=Z(a).

Remark 10.17. Let S ⊆ k[x1, ..., xn+1] be a set of forms. Then there exists a finite set of forms
{f1, ..., fr}⊆ k[x1, ..., xn+1] such that

Z(S)=Z(f1, ..., fr).

Remark 10.18. Let Pn(k) be a projective n-space over k, let V ⊆Pn(k) be a projective algebraic
set. The set I(V ) of all polynomials whose common zeros coincide with V :

I(V )= {f ! k[x1, ..., xn+1]| f(a1, ..., an+1)= 0 for all [a1: ...: an+1]!V }

is a homogenous ideal of k[x1, ..., xn].

Definition 10.19. Let Pn(k) be a projective n-space over k, let V ⊆Pn(k) be a projective algebraic
set. The ideal I(V ) consisting of polynomials whose common zeros constitute V shall be called the
ideal of the projective algebraic set V.

Remark 10.20. Let Pn(k) be a projective n-space over k, let V , V1, V2 ⊆ Pn(k) be projective
algebraic sets, let a, a1, a2 be homogenous ideals of k[x1, ..., xn+1]. Then:

1. a1⊆ a2⇒Z(a1)⊇Z(a2),

2. I(Z(a))⊇ a,

3. Z(I(V ))=V ,

4. V1⊆V2, I(V1)⊇ I(V2),

5. V1=V2, I(V1)= I(V2).

10.3 Projective algebraic varietes.

Definition 10.21. Let Pn(k) be a projective n-space over k. A nonempty projective algebraic set
V ⊆Pn(k) will be called a projective algebraic variety if the homogenous ideal I(V ) of the ring
k[x1, ..., xn+1] is prime.

Definition 10.22. Let Pn(k) be a projective n-space over k. A nonempty projective algebraic set
V ⊆Pn(k) will be called irreducible, if for projective algebraic sets A,B ⊆Pn(k):

V =A∪B⇒ V =A∨V =B.

Theorem 10.23. Let Pn(k) be a projective n-space over k. A nonempty projective algebraic set
V ⊆Pn(k) is irreducible if and only if it is a projective algebraic variety.
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Theorem 10.24. Let Pn(k) be a projective n-space over k. Every projective algebraic set V is a
finite sum of projective algebraic varieties:

V =V1∪ ...∪Vr, r≥ 1.

If in the above decomposition the varieties Vi are incomparable (that is Vi⊂/ Vj for i=/ j), then they
are uniquely defined.

10.4 Projective Nullstellensatz.

Definition 10.25. Let Pn(k) be a projective n-space over k, let V ⊆Pn(k) be a projective algebraic
set. The set

C(V )= {(x1, ..., xn+1)! kn| [x1: ...:xn]!V }∪ {(0, ..., 0)}

will be called the cone over V.

Notation 10.26. To avoid confucion when necessary, we shall write Za(I) and Ia(V ) for affine
operations and Zp(I) and Ip(V ) for projective operations.

Remark 10.27. Let Pn(k) be a projective n-space over k, let V ⊆Pn(k) be a nonempty projective
algebraic set. Then

Ia(C(V ))= Ip(V ).

Moreover, let a" k[x1, ..., xn+1] be a homogeneous ideal such that Zp(a) =/ ∅. Then

C(Zp(a))=Za(a).

Corollary 10.28. (projective Nullstellensatz) Let k be algebraically closed, let a " k[x1, ...,
xn+1] be a homogeneous ideal. Then:

1. Zp(a)= ∅ if and only if there is an integer N such that a contains all forms of degree #N;

2. if Zp(a)=/ ∅, then Ip(Zp(a))= rad(a).

Proof.

1. The following four consitions are equivalent:

i. Zp(a)= ∅,

ii. Zp(a)⊆ {(0, ..., 0)},

iii. rad(a)= Ia(Za(a))⊇〈x1, ..., xn+1) (by the affine Nullstellensatz),

iv. 〈x1, ..., xn+1)N ⊆ a.

2. Ip(Zp(a))= Ia(C(Zp(a))) =Ia(Za(a)) = rad(a). !

10.5 Zariski topology.

Lemma 10.29. A finite sum of profective algebraic sets is a projective algebraic set. To be more
precise, let a1, ..., am be homogenous ideals of the ring k[x1, ..., xn+1]. Then

Z(a1)∪ ...∪Z(am)=Z(a1 · ... · am),
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where a1 · ... · am= {
∑

i=1
k ai1ai2...aim| k !N, aij ! aj , j ! {1, ..., m}, i! {1, ..., k}}.

Remark 10.30. Let a1, ..., am be homogenous ideals of the ring k[x1, ..., xn+1]. Then

Z(a1 · ... · am)=Z(a1∩ ...∩ am).

Lemma 10.31. Intersection of any number of projective algebraic sets is a projective algebraic set.
To be more precise, let {ai| i! I} be a family of homogenous ideals of the ring k[x1, ..., xn+1]. Then

⋂

i∈I
Z(ai)=Z

((⋃

i∈I
ai

))
.

Remark 10.32. Let a1, ..., am be homogenous ideals of the ring k[x1, ..., xn+1]. Then

Z(a1+ ...+ am) =Z(〈a1∪ ...∪ am)).

Theorem 10.33. In Pn(k) there is a topology whose closed sets are projective algebraic sets in
Pn(k).

Definition 10.34. The topology of Pn(k) defined by projective algebraic sets is called the Zariski
topology in Pn(k).
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