10 Projective space. Projective algebraic sets.

10.1 Projective space.

The concept of a projective space originated from the visual effect of perspective, where parallel lines seem to meet at infinity. A projective space may thus be viewed as the extension of an Euclidean space in such a way that there is one point at infinity for each direction of parallel lines.

Consider the affine plane k^2 . Each point $(x, y) \in k^2$ can be idetified with the point $(x, y, 1) \in k^3$. Every point $(x, y, 1) \in k^3$ determines a line in k^3 that passes through (0,0,0) and (x, y, 1). Every line through (0,0,0) except those lying on the plane z=0 corresponds to exactly one such point. The lines through (0,0,0) in the plane z=0 can be thought of as corresponding to the "points at infinity".

Definition 10.1. Let k be a field. **Projective n-space over k**, written $\mathbb{P}^n(k)$, is defined to be the set of all lines through $(0,...,0) \in k^{n+1}$. Any point $(x_1,...,x_{n+1}) \neq (0,...,0)$ determines a unique such line, namely $\{(\lambda x_1,...,\lambda x_{n+1}) | \lambda \in k\}$. Elements of $\mathbb{P}^n(k)$ are called **points**. If a point $P \in \mathbb{P}^n(k)$ is determined as above by some $(x_1,...,x_{n+1}) \in k^{n+1} \setminus \{(0,...0)\}$, we say that $(x_1,...,x_{n+1})$ are the **homogeneous coordinates** of P and write $P = [x_1:...:x_{n+1}]$.

Remark 10.2. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*. Two points $(x_1, ..., x_{n+1})$, $(y_1, ..., y_{n+1}) \in k^{n+1}$ determine the same line is and only if there is a nonzero $\lambda \in k$ such that $x_1 = \lambda y_1, ..., x_{n+1} = \lambda y_{n+1}$. Let us say that $(x_1, ..., x_{n+1}), (y_1, ..., y_{n+1}) \in k^{n+1}$ are equivalent if this is the case. Then $\mathbb{P}^n(k)$ may be identified with the set of equivalence classes of points $k^{n+1} \setminus \{(0, ...0)\}$.

Remark 10.3. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k* and let $P \in \mathbb{P}^n(k)$, $P = [x_1: ...: x_{n+1}]$. Note that the *i*-th coordinate x_i is not well-defined, but that it is a well-defined notion to say whether the *i*-th coordinate is zero or nonzero. If $x_i \neq 0$ the ratios x_j/x_i are well-defined, since they are unchanged under the abovedescribed equivalence.

Definition 10.4. Let $\mathbb{P}^{n}(k)$ be a projective n-space over k. Let

$$U_i = \{ [y_1: \dots: y_{n+1}] \in \mathbb{P}^n(k) | y_i \neq 0 \}$$

Each $P \in U_i$ can be written uniquely in the form

$$P = [x_1: \ldots: x_{i-1}: 1: x_{i+1}: \ldots: x_{n+1}].$$

The coordinates $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_{n+1})$ are called the **nonhomogeneous coordinates** of P with respect to U_i .

Remark 10.5. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*. Define $\varphi_i: k^n \to U_i$ by

$$\varphi_i(x_1, \dots, x_n) = [x_1: \dots: x_{i-1}: 1: x_{i+1}: \dots: x_n].$$

Then φ_i defines a bijective correspondence between k^n and U_i . Note that $\mathbb{P}^n(k) = \bigcup_{i=1}^{n+1} U_i$, so that $\mathbb{P}^n(k)$ is covered by n+1 bijective copies of k^n .

Definition 10.6. Let $\mathbb{P}^{n}(k)$ be a projective n-space over k. The set

$$H_{\infty} = \mathbb{P}^{n}(k) \setminus U_{n+1} = \{ [x_{1}: \dots : x_{n+1}] | x_{n+1} = 0 \}$$

is called the hyperplane at infinity.

Remark 10.7. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*. The map $H_{\infty} \to \mathbb{P}^{n-1}(k)$ given by

$$[x_1:\ldots:x_n:0]\mapsto [x_1:\ldots:x_n]$$

is bijective. Thus H_{∞} may be identified with $\mathbb{P}^{n-1}(k)$ and $\mathbb{P}^n(k) = U_{n+1} \cup H_{\infty}$ is the union of an affine *n*-space and a set that gives all directions in affine *n*-space.

Example 10.8.

- 1. $\mathbb{P}^{0}(k)$ is a point.
- 2. $\mathbb{P}^1(k) = \{ [x: 1] | x \in k \} \cup \{ [1: 0] \}$ is the affine line plus one point at infinity. We call it **projective line** over k.
- 3. $\mathbb{P}^2(k) = \{ [x: y: 1] | x, y \in k \} \cup \{ [x: y: 0] | [x: y] \in \mathbb{P}^1(k) \}$. Here H_∞ is called the **line at infinity**. $\mathbb{P}^2(k)$ is called the **projective plane** over k.
- 4. Consider a line $\ell: y = ax + b$ in k^2 . If we identify k^2 with $U_3 \subseteq \mathbb{P}^2(k)$, the points on the line ℓ correspond to the points $\{[x: y: z] | y = ax + bz \text{ and } z \neq 0\} \in \mathbb{P}^2(k)$. Then

$$\{[x: y: z] | y = ax + bz\} \cap H_{\infty} = \{[1: a: 0]\},\$$

so that all lines with the same slope a, when extended that way, pass through the same point at infinity.

5. Consider the curve C: $y^2 = x^2 + 1$ in k^2 . The corresponding set in $\mathbb{P}^2(k)$ is given by the equation $y^2 = x^2 + z^2$, $z \neq 0$. Thus

$$\{[x:y:z] \mid y^2 = x^2 + z^2\} \cap H_{\infty} = \{[1:1:0], [1:-1:0]\}.$$

These are the points where the lines y = x and y = -x intersect the curve.

10.2 Projective algebraic sets.

Definition 10.9. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A point $P \in \mathbb{P}^n(k)$ is said to be a **zero** of a polynomial $f \in k[x_1, ..., x_{n+1}]$ if $f(x_1, ..., x_{n+1}) = 0$ for every choice of homogenous coordinated for P; we then write f(P) = 0.

Definition 10.10. A polynomial $f \in k[x_1, ..., x_{n+1}]$ is called a **form** of degree d if it is a sum of monomials of degree d:

$$f = \sum_{(i_1, \dots, i_{n+1}) \in S \subseteq \mathbb{N}^{n+1}} a_{i_1 \dots i_{n+1}} x_1^{i_1} \dots x_{n+1}^{i_{n+1}}, \qquad i_1 + \dots + i_{n+1} = d.$$

Remark 10.11. A polynomnial $f \in k[x_1, ..., x_{n+1}]$ is a form of degree d if and only if

$$f(ab_1, ..., ab_{n+1}) = a^d f(b_1, ..., b_{n+1}),$$

for all $a, b_1, ..., b_{n+1} \in k$.

Proof. If $f = \sum_{(i_1,...,i_{n+1}) \in S \subseteq \mathbb{N}^{n+1}} a_{i_1...i_{n+1}} x_1^{i_1} \cdot \ldots \cdot x_{n+1}^{i_{n+1}}$ where $i_1 + \ldots + i_{n+1} = d$ for all $(i_1,...,i_n) \in S$, then for any $a, b_1, \ldots, b_{n+1} \in k$:

$$f(ab_{1},...,ab_{n+1}) = \sum_{\substack{(i_{1},...,i_{n+1})\in S\subseteq\mathbb{N}^{n+1}\\ (i_{1},...,i_{n+1})\in S\subseteq\mathbb{N}^{n+1}}} a_{i_{1}...i_{n+1}}a^{i_{1}+...+i_{n+1}}b_{1}^{i_{1}}....b_{n+1}^{i_{n+1}}}$$
$$= a^{d}\sum_{\substack{(i_{1},...,i_{n+1})\in S\subseteq\mathbb{N}^{n+1}\\ (i_{1},...,i_{n+1})\in S\subseteq\mathbb{N}^{n+1}}} a_{i_{1}...i_{n+1}}b_{1}^{i_{1}}....b_{n+1}^{i_{n+1}}}$$
$$= a^{d}f(b_{1},...,b_{n+1}).$$

Conversely, assume that $f(ab_1, ..., ab_{n+1}) = a^d f(b_1, ..., b_{n+1})$, for all $a, b_1, ..., b_{n+1} \in k$. Let $f = \sum_{(i_1,...,i_{n+1}) \in S \subseteq \mathbb{N}^{n+1}} a_{i_1...i_{n+1}} x_1^{i_1} \cdot ... \cdot x_{n+1}^{i_{n+1}}$. Then

$$f(ab_1, \dots, ab_{n+1}) = \sum_{(i_1, \dots, i_{n+1}) \in S \subseteq \mathbb{N}^{n+1}} a_{i_1 \dots i_{n+1}} a^{i_1 + \dots + i_{n+1}} b_1^{i_1} \dots b_{n+1}^{i_{n+1}}.$$

On the other hand

$$a^{d}f(b_{1},...,b_{n+1}) = \sum_{(i_{1},...,i_{n+1})\in S\subseteq\mathbb{N}^{n+1}} a_{i_{1}...i_{n+1}}a^{d}b_{1}^{i_{1}}\cdot...\cdot b_{n+1}^{i_{n+1}},$$

which yields $a^{i_1+\dots+i_{n+1}} = a^d$, and, consequently, $i_1 + \dots + i_{n+1} = d$ for all $(i_1, \dots, i_n) \in S$.

Remark 10.12. Let $\mathbb{P}^{n}(k)$ be a projective *n*-space over *k*, let $P \in \mathbb{P}^{n}(k)$. If $f \in k[x_1, ..., x_{n+1}]$ is a form of degree *d* and *f* vanishes at one representative of *P*, then it vanishes at every representative of *P*.

Definition 10.13. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A projective algebraic set V is a subset of the projective n-space $\mathbb{P}^n(k)$ consisting of all common zeros of some set of forms $S \subseteq k[x_1, ..., x_{n+1}]$:

$$V = \{ [a_1: \dots: a_{n+1}] \in \mathbb{P}^n(k) | f(a_1, \dots, a_{n+1}) = 0 \text{ for all } f \in \mathcal{S} \}.$$

We shall call the set V to be defined by the set of forms S and denote by $V = \mathcal{Z}(S)$.

Definition 10.14. An ideal $\mathfrak{a} \triangleleft k[x_1, ..., x_{n+1}]$ is called homogeneous if for every $f \in \mathfrak{a}$, if

$$f = \sum_{d=0}^{m} f^{(d)},$$

where $f^{(d)}$ is a form of degree d, then also $f^{(0)}, ..., f^{(m)} \in \mathfrak{a}$.

Proposition 10.15. An ideal $\mathfrak{a} \triangleleft k[x_1, ..., x_{n+1}]$ is homogeneous if and only if it is generated by a finite set of forms.

Proof. Assume that $\mathfrak{a} \triangleleft k[x_1, ..., x_{n+1}]$ is homogeneous. Since $k[x_1, ..., x_{n+1}]$ is Noetherian, $\mathfrak{a} = \langle f_1, ..., f_k \rangle$, for some $f_1, ..., f_k \in k[x_1, ..., x_{n+1}]$. Write $f_i = \sum_{d=0}^{m_i} f_i^{(d)}$, where $f_i^{(d)}$ is a form of degree $d, i \in \{1, ..., k\}$. Then $f_i^{(d)} \in \mathfrak{a}$, as \mathfrak{a} is homogeneous, and hence $\langle f_i^{(d)} | i \in \{1, ..., k\}, d \in \{0, ..., max\{m_1, ..., m_k\}\} \rangle \subseteq \mathfrak{a}$. But as every element of \mathfrak{a} is a combination of $f_1, ..., f_k$ which, in turn, are combinations of $f_i^{(d)} | i \in \{1, ..., k\}, d \in \{0, ..., max\{m_1, ..., m_k\}\}$, the other inclusion also holds.

Conversely, assume that $\mathfrak{a} = \langle f_1^{(d_1)}, ..., f_k^{(d_k)} \rangle$, where $f_i^{(d_i)} \in k[x_1, ..., x_{n+1}]$ is a form of degree d_i . Let $f \in \mathfrak{a}$. Write $f = \sum_{i=m}^r f_i$, where deg $f_i = i$. It suffices to show that $f_m \in \mathfrak{a}$, for then $f - f_m \in \mathfrak{a}$ and an inductive argument finishes the proof. Write $f = \sum_{i=1}^k a_i \cdot f_i^{(d_i)}$, for some $a_1, ..., a_k \in k[x_1, ..., x_{n+1}]$. Comparing terms with the same degree we conclude that $f_m = \sum_{i \in \{i \mid d_i = m\}} a_i \cdot f_i^{(d_i)}$, so $f_m \in \mathfrak{a}$. \Box

Remark 10.16. Let $S \subseteq k[x_1, ..., x_{n+1}]$ be a set of forms and let \mathfrak{a} be the homogenous ideal of $k[x_1, ..., x_{n+1}]$ generated by S. Then

$$\mathcal{Z}(\mathcal{S}) = \mathcal{Z}(\mathfrak{a}).$$

Remark 10.17. Let $S \subseteq k[x_1, ..., x_{n+1}]$ be a set of forms. Then there exists a finite set of forms $\{f_1, ..., f_r\} \subseteq k[x_1, ..., x_{n+1}]$ such that

$$\mathcal{Z}(\mathcal{S}) = \mathcal{Z}(f_1, \dots, f_r).$$

Remark 10.18. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*, let $V \subseteq \mathbb{P}^n(k)$ be a projective algebraic set. The set $\mathcal{I}(V)$ of all polynomials whose common zeros coincide with *V*:

$$\mathcal{I}(V) = \{ f \in k[x_1, ..., x_{n+1}] | f(a_1, ..., a_{n+1}) = 0 \text{ for all } [a_1: ...: a_{n+1}] \in V \}$$

is a homogenous ideal of $k[x_1, ..., x_n]$.

Definition 10.19. Let $\mathbb{P}^{n}(k)$ be a projective *n*-space over *k*, let $V \subseteq \mathbb{P}^{n}(k)$ be a projective algebraic set. The ideal $\mathcal{I}(V)$ consisting of polynomials whose common zeros constitute *V* shall be called the *ideal of the projective algebraic set V*.

Remark 10.20. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*, let *V*, $V_1, V_2 \subseteq \mathbb{P}^n(k)$ be projective algebraic sets, let $\mathfrak{a}, \mathfrak{a}_1, \mathfrak{a}_2$ be homogenous ideals of $k[x_1, ..., x_{n+1}]$. Then:

- 1. $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \Rightarrow \mathcal{Z}(\mathfrak{a}_1) \supseteq \mathcal{Z}(\mathfrak{a}_2),$
- 2. $\mathcal{I}(\mathcal{Z}(\mathfrak{a})) \supseteq \mathfrak{a}$,
- 3. $\mathcal{Z}(\mathcal{I}(V)) = V$,
- 4. $V_1 \subseteq V_2 \Leftrightarrow \mathcal{I}(V_1) \supseteq \mathcal{I}(V_2),$
- 5. $V_1 = V_2 \Leftrightarrow \mathcal{I}(V_1) = \mathcal{I}(V_2).$

10.3 Projective algebraic varietes.

Definition 10.21. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*. A nonempty projective algebraic set $V \subseteq \mathbb{P}^n(k)$ will be called a **projective algebraic variety** if the homogenous ideal $\mathcal{I}(V)$ of the ring $k[x_1, ..., x_{n+1}]$ is prime.

Definition 10.22. Let $\mathbb{P}^n(k)$ be a projective *n*-space over *k*. A nonempty projective algebraic set $V \subseteq \mathbb{P}^n(k)$ will be called *irreducible*, if for projective algebraic sets $A, B \subseteq \mathbb{P}^n(k)$:

$$V = A \cup B \Rightarrow V = A \lor V = B.$$

Theorem 10.23. Let $\mathbb{P}^n(k)$ be a projective n-space over k. A nonempty projective algebraic set $V \subseteq \mathbb{P}^n(k)$ is irreducible if and only if it is a projective algebraic variety.

Theorem 10.24. Let $\mathbb{P}^n(k)$ be a projective n-space over k. Every projective algebraic set V is a finite sum of projective algebraic varieties:

$$V = V_1 \cup \ldots \cup V_r, \quad r \ge 1.$$

If in the above decomposition the varieties V_i are incomparable (that is $V_i \notin V_j$ for $i \neq j$), then they are uniquely defined.

10.4 Projective Nullstellensatz.

Definition 10.25. Let $\mathbb{P}^{n}(k)$ be a projective n-space over k, let $V \subseteq \mathbb{P}^{n}(k)$ be a projective algebraic set. The set

$$\mathcal{C}(V) = \{(x_1, ..., x_{n+1}) \in k^n | [x_1: ...: x_n] \in V\} \cup \{(0, ..., 0)\}$$

will be called the **cone** over V.

Notation 10.26. To avoid confucion when necessary, we shall write $\mathcal{Z}_a(I)$ and $\mathcal{I}_a(V)$ for affine operations and $\mathcal{Z}_p(I)$ and $\mathcal{I}_p(V)$ for projective operations.

Remark 10.27. Let $\mathbb{P}^n(k)$ be a projective *n*-space over k, let $V \subseteq \mathbb{P}^n(k)$ be a nonempty projective algebraic set. Then

$$\mathcal{I}_a(\mathcal{C}(V)) = \mathcal{I}_p(V).$$

Moreover, let $\mathfrak{a} \triangleleft k[x_1, ..., x_{n+1}]$ be a homogeneous ideal such that $\mathcal{Z}_p(\mathfrak{a}) \neq \emptyset$. Then

$$\mathcal{C}(\mathcal{Z}_p(\mathfrak{a})) = \mathcal{Z}_a(\mathfrak{a}).$$

Corollary 10.28. (projective Nullstellensatz) Let k be algebraically closed, let $a \triangleleft k[x_1, ..., x_{n+1}]$ be a homogeneous ideal. Then:

- 1. $\mathcal{Z}_p(\mathfrak{a}) = \emptyset$ if and only if there is an integer N such that \mathfrak{a} contains all forms of degree $\geq N$;
- 2. if $\mathcal{Z}_p(\mathfrak{a}) \neq \emptyset$, then $\mathcal{I}_p(\mathcal{Z}_p(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.

Proof.

- 1. The following four consitions are equivalent:
 - i. $\mathcal{Z}_p(\mathfrak{a}) = \emptyset$,
 - ii. $\mathcal{Z}_p(\mathfrak{a}) \subseteq \{(0, ..., 0)\},\$
 - iii. $\operatorname{rad}(\mathfrak{a}) = \mathcal{I}_a(\mathcal{Z}_a(\mathfrak{a})) \supseteq \langle x_1, ..., x_{n+1} \rangle$ (by the affine Nullstellensatz),
 - iv. $\langle x_1, ..., x_{n+1} \rangle^N \subseteq \mathfrak{a}.$

2.
$$\mathcal{I}_p(\mathcal{Z}_p(\mathfrak{a})) = \mathcal{I}_a(\mathcal{C}(\mathcal{Z}_p(\mathfrak{a}))) = \mathcal{I}_a(\mathcal{Z}_a(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$$

10.5 Zariski topology.

Lemma 10.29. A finite sum of profective algebraic sets is a projective algebraic set. To be more precise, let $\mathfrak{a}_1, ..., \mathfrak{a}_m$ be homogenous ideals of the ring $k[x_1, ..., x_{n+1}]$. Then

$$\mathcal{Z}(\mathfrak{a}_1) \cup \ldots \cup \mathcal{Z}(\mathfrak{a}_m) = \mathcal{Z}(\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m),$$

where $\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m = \{\sum_{i=1}^k a_{i1} a_{i2} \ldots a_{im} | k \in \mathbb{N}, a_{ij} \in \mathfrak{a}_j, j \in \{1, \ldots, m\}, i \in \{1, \ldots, k\}\}.$

Remark 10.30. Let $a_1, ..., a_m$ be homogenous ideals of the ring $k[x_1, ..., x_{n+1}]$. Then

$$\mathcal{Z}(\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m) = \mathcal{Z}(\mathfrak{a}_1 \cap \ldots \cap \mathfrak{a}_m).$$

Lemma 10.31. Intersection of any number of projective algebraic sets is a projective algebraic set. To be more precise, let $\{a_i | i \in I\}$ be a family of homogenous ideals of the ring $k[x_1, ..., x_{n+1}]$. Then

$$\bigcap_{i \in I} \mathcal{Z}(\mathfrak{a}_i) = \mathcal{Z}\left(\left(\bigcup_{i \in I} \mathfrak{a}_i\right)\right).$$

Remark 10.32. Let $a_1, ..., a_m$ be homogenous ideals of the ring $k[x_1, ..., x_{n+1}]$. Then

$$\mathcal{Z}(\mathfrak{a}_1 + \ldots + \mathfrak{a}_m) = \mathcal{Z}(\langle \mathfrak{a}_1 \cup \ldots \cup \mathfrak{a}_m \rangle).$$

Theorem 10.33. In $\mathbb{P}^n(k)$ there is a topology whose closed sets are projective algebraic sets in $\mathbb{P}^n(k)$.

Definition 10.34. The topology of $\mathbb{P}^{n}(k)$ defined by projective algebraic sets is called the **Zariski** topology in $\mathbb{P}^{n}(k)$.