
9 Rational maps of affine algebraic sets. Birational equival-
ence of affine algebraic sets.

Definition 9.1. Let V ! kn and W ! km be affine varietes. A rational map f :V →W is a map
such that there exist f1, ..., fm ∈ k(V ) such that f(a) = (f1(a), ..., fm(a)), for all the points a ∈ V
where all the rational functions f1, ..., fm∈ k(V ) are defined.

Remark 9.2. Let V ! kn and W ! km be affine varietes, let f : V → W be a rational map,
f =(f1, ..., fm) with f1, ..., fm∈k(V ). There exists an open set ∅=/ U !V such that f1 !U , ..., fm !U
are regular on U . In other words, we can think of rational maps as defined on open subsets.

Proof. By Remark 8.6 there exist nonempty open subsets U1, ...,Um!V such that fi !Ui is regular
on Ui. The set U =U1∩ ...∩Um is open, as a finite intersection of open sets, and it suffices to show
that it is nonempty.

Indeed, suppose that
!
i=1
m Ui= ∅. Say Ui= V \ Vi, for some closed subset Vi, i ∈ {1, ..., m}. But

then Vi=/ V and V =
⋃
i=1
m Vi contradicting the fact that V , as a variety, is irreducible. "

Remark 9.3. Let V ! kn and W ! km be affine varietes, let f1, ..., fm ∈ k(V ). Then f1, ..., fm
define a rational map f :V →W .

Proof. It suffices to check that at every point a∈V where all the rational functions f1, ..., fm are
defined we have, in fact, (f1(a), ..., fm(a)) ∈W . Let U ! V be the nonempty open set such that
f1 !U , ..., fm !U are regular on U . Let u∈I(W ). Then u(f1, ..., fm)∈k(V ) and u(f1, ..., fm) vanishes
at every point of U . As a nonempty open set in V , U is dense in V by Remark 5.5. u(f1, ..., fm)
is continuous and vanishes on the dense set U , so it vanishes on V . Since u ∈ I(W ) was chosen
arbitrarily, this yields (f1(a), ..., fm(a))∈W . "

Remark 9.4. Let V ! kn and W ! km be affine varietes, let f : V →W be a rational map and
assume that f(V ) is dense in W . The map f defines a field embedding f∗: k(W )→ k(V ).

Proof. Let f1, ..., fm ∈ k(V ) be such that f = (f1, ..., fm) and let U ! V be the nonempty open
set such that f1 !U , ..., fm !U are regular on U . Consider f as a map f :U→ f(V ). For ϕ∈ k[W ],
ϕ=Φ+ I(W ), Φ∈ k[x1, ..., xm], define f∗(ϕ) =Φ(f1, ..., fm). Clearly Φ(f1, ..., fm)∈ k[V ]! k(V ),
so that f∗: k[W ]→ k(V ) is a homomorphism, and it suffices to check that it is injective.

If f∗(ϕ)= 0 for ϕ=Φ+ I(W )∈ k[W ], then Φ=0 on f(V ). But if Φ=/ 0 on W , then the equality
Φ=0 defines a closed subset W ′ of W . Then ϕ(V )!W ′, but this contradicts the assumption that
f(V ) is dense in W .

The embedding ϕ∗: k[W ]→ k(V ) can be extended in an obvious way to ϕ∗: k(W )→ k(V ). "

Definition 9.5. Let V ! kn and W ! km be affine varietes, let f :V →W be a rational map such
that f(V ) is dense in W. The map f is a birational equivalence if there is a rational map g:
W→V such that g(W ) is dense in V and

f ◦ g=1W and g ◦ f =1V .

In this case we say that V and W are birationally equivalent or birational.

Corollary 9.6. Let V ! kn and W ! km be affine varietes. Then V and W are birationally
equivalent if and only if k(V )=∼ k(W ).

Proof. If V and W are birationally equivalent, then k(V )=∼ k(W ) by Remark 9.4. Conversely, if
k(V )=∼k(W ), then the rational functions xi=Xi+I(V ) correspond to rational functions fi∈k(W ).
One checks that f =(f1, ..., fm) is a birational equivalence. "
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Example 9.7. Let V =Z(xy− 1) and W =Z(y), let f :V →W be given by (x, y) )→ (x, 0). This
is a birational equivalence, but not an isomorphism.

Example 9.8. Let V =Z(y) andW =Z(y2−x3), let f :V →W be given by (x,0) )→(x2,x3). This is
a birational equivalence (the inverse map g:W→V being (x, y) )→

( y
x
,0
)
), but not an isomorphism.

Proposition 9.9. Let V ! kn and W ! km be affine varietes, let f : V → W be a birational
equivalence. Then there exist open subsets U !V and U ′!W which are isomorphic.

Proof. Let g:W→V be the birational map such that f ◦ g=1W and g ◦ f =1V . Let U1! V be
the open set on which f is defined, and, likewise, U2!W the open set where g is defined. Then
f ◦ g is the identity map on U2 ∩ g−1(U1) and g ◦ f is the identity map on U1∩ f−1(U2). Thus f
and g define an isomorphism between U = f−1 ◦ g−1(U1) and U ′= g−1 ◦ f−1(U2). "

Proposition 9.10. (Noether normalization lemma) Let k be algebraically closed, and k!K a
finitely generated field extension. Then there exist elements z1, ..., zd+1∈K with K=k(z1, ..., zd+1)
such that z1, ..., zd are algebraically independent over k, and zd+1 is separable over k(z1, ..., zd+1).

Proof. Let K be generated over k by a finite number of elements t1, ..., tn and let d be the maximal
number of algebraically independent elements among t1, ..., tn. Changing the order of t1, ..., tn, if
necessary, we might as well assume that t1, ..., td are algebraically independent. Then any element
y∈K is algebraically dependent on t1, ..., td and, moreover, there exists a relation f(t1, ..., td, y)=0
with f(T1, ..., Td, Td+1) irreducible ober k.

Let f(T1, ..., Td, Td+1) be such a polynomial for t1, ..., td, td+1. We claim that the partial derivative
∂f

∂Ti
(T1, ..., Td, Td+1)=/ 0 for at least one i∈ {1, ..., d+1}. Indeed, if this was not the case, then each

Ti occurs in f in powers that are multiples of the characteristic p of the field k, that is, f is of the
form f =

∑
ai1...id+1T1

pi1·...·Td+1
pid+1. Set ai1...id+1= bi1...id+1

p and g= f =
∑
bi1...id+1T1

i1·...·Td+1
id+1. Then

we get f = gp, which contradicts the irreducibility of f .

If ∂f

∂Ti
(T1, ..., Td, Td+1) =/ 0, the d elements t1, ..., ti−1, ti+1, ..., td+1 are algebraically independent

over k. Indeed, ti is algebraically independent over k(t1, ..., ti−1, ti+1, ..., td+1) because
∂f

∂Ti
(T1, ...,

Td, Td+1)=/ 0, so that Ti occurs in f . Thus if t1, ..., ti−1, ti+1, ..., td+1 were algebraically dependent,
the transcendence degree of k(t1, ..., td+1) would be less than d, which contradicts the algebraic
independence of t1, ..., td.

Thus we can always rearrange t1, ..., td+1 so that t1, ..., td are algebraically independent over k, and
∂f

∂Td+1
(T1, ..., Td, Td+1)=/ 0. This shows that td+1 is separable over k(t1, ..., td). Since td+2 is algebraic

over k(t1, ..., td), by the Primitive Element Theorem we can find an element y ∈ K such that
k(t1, ..., td+2) = k(t1, ..., td, y). Repeating the process of adjoining elements td+1, ..., tn we express
K as k(z1, ..., zd+1), where z1, ..., zd are algebraically independent over k and f(z1, ..., zd, zd+1)=0,
with f an irreducible polynomial over k with ∂f

∂Td+1
(T1, ..., Td, Td+1) =/ 0. "

Proposition 9.11. Let V ! kn be an affine variety. Then V is birationally equivalent to a hyper-
surface of some affine space km.

Proof. k(V ) is finitely generated over, say k(V ) = k(t1, ..., tn). We may view t1, ..., tn as rational
functions on V . Let d be the maximal number of t1, ..., td that are algebraically independent over k.
By the Noether Normalization Lemma, k (V ) can be written in the form k(z1, ..., zd+1), where z1, ...,
zd are algebraically independent and f(z1, ..., zd+1)=0 for some irreducible polynomial f ∈k[T1, ...,
Td+1]with

∂f

∂Td+1
(T1, ..., Td, Td+1) =/ 0. Let W =Z(f). The function field k(W ) of the variety W is

obviously isomorphic to k(V ), which means that V and W are birationally equivalent. "

A variety is called rational if it is birationally equivalent to kn, for some n.
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