
7 Coordinate ring of an affine algebraic set. Morphisms of
affine algebraic sets. Category of affine algebraic sets.

7.1 Coordinate ring of an affine algebraic set.

Definition 7.1. Let k be a field, V ! kn an affine algebraic set, I(V ) the ideal of V. The ring
k[V ] := k[x1, ..., xn]/I(V ) is called the coordinate ring of V.

Remark 7.2. Let k be a field, V !kn an affine algebraic set, I(V ) the ideal of V . Let f ∈k[x1, ...,
xn]. The polynomial f defines a polynomial function kn→k. Let fV be the restriction of f to the
set V , fV = f !V . Then fV = gV if and only if f + I(V )= g+I(V ).

Proof. Indeed, fV = gV means that f(a1, ..., an) = g(a1, ..., an), for all (a1, ..., an) ∈ V , that is
(f − g)(a1, ..., an)= 0, for all (a1, ..., an)∈V , or, equivalently, f − g ∈I(V ). "

Remark 7.3. Let k be a field, V ! kn an affine algebraic set, I(V ) the ideal of V . Let κ:
k[x1, ..., xn]→ k[V ] be the canonical epimorphism, κ(f) = f := f + I(V ). Then k[V ] is a k-ring
finitely generated over k by x1, ..., x2.

Remark 7.4. Let k be algebraically closed, V ! kn an affine algebraic set, I(V ) the ideal of V .
Then k[V ] has no nonzero nilpotents.

Proof. By Hilbert Nullstellensatz, I(V ) is radical, so that, by Lemma 6.7, k[V ]=k[x1, ...,xn]/I(V )
has no nonzero nilpotents. "

Theorem 7.5. Let k be algebraically closed. Then a k-ring A is isomorphic to a coordinate ring
of an affine algebraic set V ! kn if and only if it is finitely generated over k and has no nonzero
nilpotents.

Proof. Let A=k[t1, ..., tn] be a ring finitely generated over k with no nonzero nilpotents. The map

k[x1, ..., xn]→A, f %→ f(t1, ..., tn)

is a well-defined ring epimorphism. Define by a its kernel. The ring k[x1, ..., xn] /a =∼ A has no
nonzero nilpotents, hence, by Lemma 6.7, the ideal a is radical. Thus a=I(Z(a)) and, consequently,
A=∼ k[Z(a)]. "

Example 7.6. One easily checks that:

• V = kn, k[V ] =∼ k[x1, ..., xn];

• V = ∅, k[V ] =∼ 0;

• V = {(a1, ..., an)}, k[V ] =∼ k.

Example 7.7. Let V = Z(f), where f ∈ k[x1, ..., xn] is square-free and k is algebraically closed.
Then k[V ] =∼ k[x1, ..., xn]/(f) =∼ k[α1, ...,αn] where f(α1, ...,αn)= 0.

Proof. By Hilbert Nullstellensatz I(V )=I(Z(f))= rad (f). One easily checks that (f)= rad (f)
if and only if f is square-free, which follows that k[V ] =∼ k[x1, ..., xn] / (f) =∼ k[α1, ..., αn], where
αi=xi+(f), for i∈ {1, ..., n}. "
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Example 7.8. Let V =Z(a1x1+ ...+anxn− b), where a1, ..., an, b∈k and k is algebraically closed.
Then k[V ] =∼ k[x1, ..., xn−1].

Proof. As in the previous example, k[V ]=∼k[x1, ..., xn]/(a1x1+ ...+anxn− b)=∼k[α1, ...,αn], where
a1α1+ ...+anαn= b. Relabelling, if necessary, we may assume that an=/ 0. Further, we may assume

that an=1, since Z(a1x1+ ...+ anxn− b)=Z
!
a1
an
x1+ ...+ an

an
xn− b

an

)
. Thus

αn= b− a1α1− ...− an−1αn−1,

and the ring k[V ] =∼ k[α1, ...,αn] is generated by the elements α1, ...,αn−1. If suffices to show that
these elements are algebraically independent: indeed, if g(α1, ..., αn−1) = 0, for some g ∈ k[x1, ...,
xn−1], then

I(V ) = 0k[V ]= g(α1, ...,αn−1)= g(x1+I(V ), ..., xn−1+ I(V ))
= g(x1, ..., xn−1)+ I(V ),

so that g ∈I(V )= (h), that is h divides g in the ring k[x1, ..., xn]. But this is impossible, since xn
appears in h with a nonzero coefficient, and does not appear in any of the monomials of g. Thus
α1, ...,αn−1 are algebraically independent over k, and thus k[α1, ...,αn−1] =∼ k[x1, ..., xn−1]. "

7.2 Basic notions from category theory.

Definition 7.9. A category C consists of a class of objects Ob(C), denoted by A, B, C, ... and
a class of morphisms (or arrows) Ar(C) together with:

1. classes of pairwise disjoint arrows HomC(A,B), one for each pair of objects A,B ∈Ob(C);
and elements f of the class HomC(A, B) shall be called a morphism from A to B and

denoted by A→→→→→→→→f B or f :A→B,

2. functions HomC(B, C) × HomC(A, B) → HomC(A, C), for each triple of objects A, B,

C ∈Ob(C), called composition of morphisms; for morphisms A→→→→→→→→f B and B→→→→→→→→g C values of
this function shall be denoted by (g, f) %→ g ) f, and the morphism A→→→→→→→→→→→→→→→→→→→→→→→→→→→→g◦f C shall be called

the composition of morphisms A→→→→→→→→f B and B→→→→→→→→g C.

Moreover, we require that the following two axioms hold true:

Associativity. If A→→→→→→→→f B, B→→→→→→→→g C and C→→→→→→→→→→h D are morphisms in C, then

h ) (g ) f)= (h ) g) ) f.

Identity. For every object B ∈ Ob(C) there exists a morphism B →→→→→→→→→→→→→→→→→→1B B such that for all

morphisms A→→→→→→→→f B and B→→→→→→→→g C

1B ) f = f and g ) 1B= g.

If the classes Ob(C) and Ar(C) are sets, we shall call the category C small. If all classes Hom(A,
B) are sets, we shall call the category C locally small.

Example 7.10.

1. We shall set the notation for a number of familiar categories here:

• Set is the category of sets with functions as morphisms;
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• Grp is the category of groups with group homomorphisms as morphisms;

• T op is the category of topological spaces with continuous functions as morphisms.

• Ab is the category of Abelian groups;

• Rng is the category of rigns;

• F ield is the category of fields;

• k−Vect is the category of k− vector spaces;

• k−Alg fg0 is the category of finitely generated k-algebras over an algebraically closed
field k with no nonzero nilpotent elements.

All these categories are locally small, but not small.

2. The notion of a category allows for a different take on familiar constructions in mathematics.
For example, consider a partial order (P ,#). One checks that considering the elements of
P as objects, and defining morphisms by

a→ b ⇔ a# b

one obains a category, which is small provided P is a set.

Definition 7.11. Let C be a category. If, for two objects A, B ∈ Ob(C) there exist morphisms
A→→→→→→→→f B and B→→→→→→→→g A such that

f ) g=1B and g ) f =1A

then we say that objects A and B are isomorphic and write A=∼B.

Definition 7.12. Let C and D be categories. A covariant functor F from C to D is a pair of
maps Ob(C)→ Ob(D) and Ar(C)→ Ar(D) (denoted by the same symbol F), that assign to each

object A ∈ Ob(C) an object F (A) ∈ Ob(D) and to each morphism A→→→→→→→→f B in Ar(C) a morphism

F (A)→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →F (f)
F (B) in Ar(D) in a way that the following two axioms are satisfied:

1. F (1A)= 1F (A), for every object A∈Ob(C);

2. F (g ) f)=F (g) )F (f), for all arrows A→→→→→→→→f B and B→→→→→→→→g C in Ar(C).

A contravariant functor is defined in an analogous way, but to each morphism A→→→→→→→→f B in Ar(C)
a morphism F (B)→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →F (f)

F (A) in Ar(D) is assigned and the axiom 2. is replaced with:

2’. F (g ) f) =F (f) )F (g), for all arrow A→→→→→→→→f B and B→→→→→→→→g C in Ar(C).

Example 7.13.

1. Identity functors. For every category C the map IC: C→ C given by

IC(A)=A, for every object A∈Ob(C), IC(f)= f , for every morphism A→→→→→→→→f B in C

is a covariant functor that shall be called the identity functor.
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2. Forgetful functors. The map F : Grp→Set given by

F (G)=G, for every objectG∈Ob(Grp), F (f)= f , for every morphismG→→→→→→→→f H in Grp

is a covariant functor that shall be called the forgetful functor. In the same way we can
define forgetful functors Rng→Set, T op→Set etc.

3. Free functors. The map F :Set→Ab given by

F (X)= free Abelian group with basis X, for every object X ∈Ob(Ab),

and

F (f)= the uniquely defined morphism f s.t. f !X=f , for every morphism X→→→→→→→→f Y in Set

is a covariant functor that creates free Abelian groups. In the same way we can define free
fuctors Set→ Grp etc.

4. For a category C we define the opposite category Cop as follows: Ob(Cop) =Ob(C), and
for A,B ∈Ob(Cop)

HomCop(A,B)=HomC(B,A)

and

fop ) gop=(g ) f)op.

For example if C consists of the following objects and morphisms:

A→B→C→D,

then Cop is of the following form:

A←B←C←D.

If F : C→D is a contravariant functor, then F : Cop→D defined by

F̄ (A)=F (A), for every object A∈Ob(Cop), F̄ (fop)=F (f), for every morphism A→→→→→→→→f B in C

is a covariant functor.

Definition 7.14. Let C and D be categories. A covariant functor F : C→D is faithful if for all
objects A,B ∈Ob(C) the induced function

HomC(A,B)→HomD(F (A), F (B))

is injective. If, moreover, it is surjective, then F shall be called fully faithful.

Proposition 7.15. Let C and D be categories, let F : C→D be a fully faithful functor. Then, for
all objects A,B ∈Ob(C), A=∼B if and only if F (A)=∼F (B).

Proof. Fix two objects A, B ∈ Ob(C) and assume that A =∼ B. Let A→→→→→→→→f B and B →→→→→→→→g A be two
morphisms such that f ) g=1B and g ) f =1A. Then

1F (B)=F (1B)=F (f ) g)=F (f) )F (g) and 1F (A)=F (1A)=F (g ) f)=F (g) )F (f)
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so that the morphisms F (A)→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →F (f)
F (B) and F (B)→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →F (g)

F (A) establish the isomorphism F (A)=∼
F (B).

Conversely, assume F (A) =∼ F (B) and let F (A)→→→→→→→→→→→→ϕ F (B) and F (B)→→→→→→→→→→→→ψ F (A) be two morphisms
such that ϕ) ψ=1F (B) and ψ )ϕ=1F (A). Since the maps HomC(A,B)→HomD(F (A), F (B)) and

HomC(B,A)→HomD(F (B), F (A)) are surjective, there exist morphisms A→→→→→→→→f B and B→→→→→→→→g A such
that ϕ=F (f) and ψ=F (g). Thus

1F (B)= ϕ) ψ=F (f) )F (g)=F (f ) g) and 1F (A)= ψ ) ϕ=F (g) )F (f)=F (g ) f).

On the other hand, F (1A)=1F (A) and F (1B)=1F (B). Since the maps HomC(A,B)→HomD(F (A),
F (B)) and HomC(B,A)→HomD(F (B), F (A)) are injective, this yields

f ) g=1B and g ) f =1A. "

Definition 7.16. Let C and D be categories. A covariant functor F :C→D is called an equivalence
of categories if it is fully faithful and essentially surjective, that is for every object B ∈ Ob(D)
there is an object A∈Ob(C) such that F (C)=D.

7.3 Category of affine algebraic sets.

Definition 7.17. Let V ! kn and W ! km be affine algebraic sets. A morphism f : V →W is a
map such that there exist f1, ..., fm∈ k[V ] such that f(a)= (f1(a), ..., fm(a)), for all a∈V.

Remark 7.18. Let V ! kn and W ! km be affine algebraic sets, let f1, ..., fm ∈ k[V ]. Then
f =(f1, ..., fm):V →W is a morphism if and only if

g(f1, ..., fm)= 0∈ k[V ] for all g ∈I(W ).

Proof. Indeed, one easily checks that

(f1(a1, ..., an), ..., fm(a1, ..., an))∈W ⇔ g(f1(a1, ..., an), ..., fm(a1, ..., an))= 0 for all g ∈ I(W )
⇔ g(f1, ..., fm)(a1, ..., an)= 0 for all g ∈I(W )
⇔ g(f1, ..., fm)∈I(V ) for all g ∈ I(W )
⇔ g(f1, ..., fm) =0∈ k[V ] for all g ∈ I(W ).

"

Example 7.19. Consider the following easy examples.

• Let f ∈ k[V ]. Then f :V → k is a morphism.

• Let f : kn→ km be a linear map. Then f is a morphism.

• Let f :Z(xy− 1)→ k be given by f(x, y)=x. Then f is a morphism.

• Let f : k→Z(y2−x3) be given by f(t)= (t2, t3). Then f is a morphism.

Example 7.20. One easily checks that:

• Z(y−xk) =∼ k via f(x, y) =x and g(t)= (t, tk);
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• f :Z(xy− 1)→ k given by f(x, y) =x is not an isomorphism;

• f :k→Z(y2−x3) given by f(t)=(t2, t3) is not an isomorphism, even though it is a bijection.

∗ We shall denote k − Aff the category of affine algebraic sets over an algebraically closed field k
with morphisms defined above.

Theorem 7.21. Let k be algebraically closed and consider the categories k −Aff and k −Alg fg0 .
The assignment

F (V )= k[V ] for an affine algebraic set V ! kn

and

F (ϕ) = ϕ∗ for a morphism of affine algebraic sets ϕ: V →W ,

where ϕ∗: k[W ]→ k[V ] is given by the formula

ϕ∗(f)= g ) ϕ

defines an equivalence of categories k−Affop and k−Alg fg0 .

Proof. The map F assigns to an affine algebraic set V !kn a finitely generated k-algebra with no
nilpotent elements by Theorem 7.5. By the same result F is also essentially surjective. If ϕ:V →W
is a morphism between affine algebraic sets V andW , and if g∈k[W ], then g )ϕ∈k[V ]. Moreover,
the map ϕ∗: k[W ] → k[V ] is a homomorphism of k-algebras. Thus F defines a contravariant
functor between categories k−Aff and k−Alg fg0 , or, equivalently, a covariant functor between the
categories k−Affop and k−Alg fg0 . It remains to check that it is fully faithful.

Assume that ϕ, ψ: V → W are morphisms of affine algebraic sets and that ϕ∗ = ψ∗. Say ϕ =
(ϕ1, ..., ϕm) and ψ = (ψ1, ..., ψm) with ϕ1, ..., ϕm, ψ1, ..., ψm ∈ k[V ]. Consider the element
x̄
1
= x1 + I(V ) ∈ k[W ]. Since x̄1 ) ϕ = ϕ∗(x̄1) = ψ∗(x̄2) = x̄2 ) ψ it follows that ϕ1 = x1(ϕ1, ...,

ϕm) = x1(ψ1, ..., ψm) = ψm. Likewise ϕj = ψj, for j ∈ {2, ..., m}, so that the map Homk−Aff(V ,
W )→Homk−Algfg0 (F (V ), F (W )) is injective.

Finally, let f : k[W ]→ k[V ] be a homomorphism of k-algebras. We shall show that f = ϕ∗, for
some morphism ϕ:V →W . Indeed, consider the elements x̄j=xj+I(W ), for j ∈ {1, ...,m}. Then
ϕj= f(x̄j)∈k[V ], j ∈{1, ...,m}, and consider the map ϕ=(ϕ1, ...,ϕm):V →km. Clearly f=ϕ∗ and
all that is left to show is that ϕ(V )!W . Fix H ∈ I(W ). Then H(x̄1, ..., x̄m) = 0 in k[W ], hence
also f(H)=0 on V . Fix (a1, ..., an)∈V ; then H(ϕ(a1, ..., an))= f(H)(a1, ..., an)=0, and therefore
ϕ(a1, ..., an)∈W . "

28


