7 Coordinate ring of an affine algebraic set. Morphisms of
affine algebraic sets. Category of affine algebraic sets.

7.1 Coordinate ring of an affine algebraic set.

Definition 7.1. Let k be a field, V C k™ an affine algebraic set, Z(V) the ideal of V. The ring
k[V]:=k[z1,...,2n) /Z(V) is called the coordinate ring of V.

Remark 7.2. Let k be a field, V C k™ an affine algebraic set, Z(V') the ideal of V. Let f € k[zq,...,
Zp). The polynomial f defines a polynomial function k™ — k. Let fi be the restriction of f to the
set V, fy=f1lv. Then fy=gy ifand only if f+Z(V)=g+Z(V).

Proof. Indeed, fy = gy means that f(aq, ..., an) = g(ai, ..., a,), for all (ay, ..., a,) € V, that is
(f=9)(a1,...,an) =0, for all (ay,...,a,) €V, or, equivalently, f —geZ(V). O

Remark 7.3. Let k be a field, V' C k" an affine algebraic set, Z(V) the ideal of V. Let :
k[z1, ..., ) — k[V] be the canonical epimorphism, k(f) = f:= f +Z(V). Then k[V] is a k-ring

finitely generated over k by i, ..., T3.

Remark 7.4. Let k be algebraically closed, V C k™ an affine algebraic set, Z(V') the ideal of V.
Then k[V] has no nonzero nilpotents.

Proof. By Hilbert Nullstellensatz, Z(V') is radical, so that, by Lemma 6.7, k[V]=k[x1, ...,zn] /Z(V)
has no nonzero nilpotents. O

Theorem 7.5. Let k be algebraically closed. Then a k-ring A is isomorphic to a coordinate ring
of an affine algebraic set VC k™ if and only if it is finitely generated over k and has no nonzero
nilpotents.

Proof. Let A=k][tq,...,t,] be a ring finitely generated over k with no nonzero nilpotents. The map
klx1,...,zn) — A, f= it tn)
is a well-defined ring epimorphism. Define by a its kernel. The ring k[z1, ..., 2,) /a & A has no

nonzero nilpotents, hence, by Lemma 6.7, the ideal a is radical. Thus a=Z(Z(a)) and, consequently,
AXE[Z(a)]. O

Example 7.6. One easily checks that:
o V=k" k[V]|=Ek[zy,...,z];
o V=0, EkV]o0

o V={(a1,....an)}, k[V]=k.

Example 7.7. Let V = Z(f), where f € k[z1, ..., ] is square-free and k is algebraically closed.
Then k[V]Xk[z1,...,x.) /() Zk[oa, ..., an] where f(aq,...,a,)=0.

Proof. By Hilbert Nullstellensatz Z(V)=Z(Z(f)) =rad (f). One easily checks that (f)=rad (f)
if and only if f is square-free, which follows that k[V] & k[x1, ..., z,] / (f) = k[aa, ..., ay), where
aj=z;+ (f), for ie{l,...,n}. O
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Example 7.8. Let V =Z(a121+ ... + anxn —b), where aq, ..., an,b €k and k is algebraically closed.
Then k[V] = k[z1, ..., Tp—_1].

Proof. As in the previous example, k[V]| X k[z1, ..., z,] / (@121 + ... + apzy — b) 2 k[av, ..., ], where
a101 + ... + ano, =b. Relabelling, if necessary, we may assume that a,, # 0. Further, we may assume

that a, =1, since Z(a1x1+ ... + apz, —b) :Z(Z—lwl—i- +Z_I"_ai) Thus

n
an:b —a101 — ... —O0p—-10n—1,

and the ring k[V] 2 k[as, ..., o] is generated by the elements ay, ..., a,—1. If suffices to show that
these elements are algebraically independent: indeed, if g(aq, ..., a,—1) =0, for some g € k[z1, ..
Zp—1], then

bl

(V) = Ogvi=glon, .., an-1) =gx1 +I(V), ...,an_1+I(V))
= g(z’b...,ﬂfn—l)“l‘z-(v)a

so that g € Z(V) = (h), that is h divides g in the ring k[z1, ..., z,]. But this is impossible, since z,,

appears in h with a nonzero coefficient, and does not appear in any of the monomials of g. Thus
a1, ..., 0oy —1 are algebraically independent over k, and thus k[aq, ..., an—1] 2 k[z1, ..., Tp—_1]- O

7.2 Basic notions from category theory.

Definition 7.9. A category C consists of a class of objects Ob(C), denoted by A, B,C, ... and
a class of morphisms (or arrows) Ar(C) together with:

1. classes of pairwise disjoint arrows Home(A, B), one for each pair of objects A, B € Ob(C);
and elements f of the class Hom¢(A, B) shall be called a morphism from A to B and

denoted by ALB or f:A— B,

2. functions Home(B, C) x Home(A, B) — Home(A, C), for each triple of objects A, B,
C €O0b(C), called composition of morphisms; for morphisms AL B and B C values of
this function shall be denoted by (g, f)+— go f, and the morphism Aﬂ C shall be called

the composition of morphisms A =R B and B-% C.

Moreover, we require that the following two axioms hold true:

Associativity. If A 4, B, B 2.CandC LA D are morphisms in C, then
ho(go f)=(hog)o f.

Identity. For every object B € Ob(C) there exists a morphism B 2. B such that for all
morphisms A N Band B--C

lpof=f and golp=g.

If the classes Ob(C) and Ar(C) are sets, we shall call the category C small. If all classes Hom(A,
B) are sets, we shall call the category C locally small.

Example 7.10.
1. We shall set the notation for a number of familiar categories here:

e Set is the category of sets with functions as morphisms;
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e (rp is the category of groups with group homomorphisms as morphisms;

e Top is the category of topological spaces with continuous functions as morphisms.
e Ab is the category of Abelian groups;

e TRng is the category of rigns;

e Field is the category of fields;

e Lk —Vect is the category of k — vector spaces;

o k— Alg?g is the category of finitely generated k-algebras over an algebraically closed
field & with no nonzero nilpotent elements.

All these categories are locally small, but not small.

2. The notion of a category allows for a different take on familiar constructions in mathematics.
For example, consider a partial order (P, <). One checks that considering the elements of
P as objects, and defining morphisms by

a—b & a<b

one obains a category, which is small provided P is a set.

Definition 7.11. Let C be a category. If, for two objects A, B € Ob(C) there exist morphisms
ALB and B - A such that

fog=1p and go f=1,4

then we say that objects A and B are isomorphic and write A~ B.

Definition 7.12. Let C and D be categories. A covariant functor F from C to D is a pair of
maps Ob(C) — Ob(D) and Ar(C) — Ar(D) (denoted by the same symbol F), that assign to each

object A € Ob(C) an object F(A) € Ob(D) and to each morphism A L. Bin Ar(C) a morphism
F(A) ﬂF(B) in Ar(D) in a way that the following two axioms are satisfied:
1. F(14) =1p(a), for every object A€ Ob(C);

2. F(go f)=F(g)o F(f), for all arrows AL BadBLCin Ar(C).

A contravariant functor is defined in an analogous way, but to each morphism AL B in Ar(C)

&F(A) in Ar(D) is assigned and the aziom 2. is replaced with:

a morphism F(B)
2’. F(go f)=F(f)oF(g), for all arrow AL BandBLCin Ar(C).

Example 7.13.

1. Identity functors. For every category C the map I¢:C — C given by

Ic(A)= A, for every object A€ Ob(C), Ic(f)=f, for every morphism AL Bumc

is a covariant functor that shall be called the identity functor.
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2. Forgetful functors. The map F': Grp — Set given by
F(G)=G, for every object G € Ob(Grp), F(f)=f, for every morphism GLH in Grp

is a covariant functor that shall be called the forgetful functor. In the same way we can
define forgetful functors Rng — Set, Top — Set etc.

3. Free functors. The map F: Set — Ab given by
F(X)=free Abelian group with basis X, for every object X € Ob(.Ab),
and
F(f)= the uniquely defined morphism f s.t. f[x=f, for every morphism X N Y in Set

is a covariant functor that creates free Abelian groups. In the same way we can define free
fuctors Set — Grp etc.

4. For a category C we define the opposite category C°P as follows: Ob(C°P) = Ob(C), and
for A, B € Ob(C°P)

Homeor(A, B) =Home¢(B, A)
and
fPogP=(go f)°P.
For example if C consists of the following objects and morphisms:
A—-B—-C—D,
then C°P is of the following form:

A—B—C«D.
If F:C—D is a contravariant functor, then F:C°P — D defined by
F(A)=F(A), for every object A€ Ob(C°P), F(f°P)=F(f), for every morphism A LB C
is a covariant functor.

Definition 7.14. Let C and D be categories. A covariant functor F:C — D is faithful if for all
objects A, B € Ob(C) the induced function

Hom¢(A, B) — Homp(F(A), F(B))
is injective. If, moreover, it is surjective, then F shall be called fully faithful.

Proposition 7.15. Let C and D be categories, let F:C — D be a fully faithful functor. Then, for
all objects A, B€ Ob(C), A= B if and only if F(A) = F(B).

Proof. Fix two objects A, B € Ob(C) and assume that A~ B. Let A L. B and B % A be two
morphisms such that fog=15 and go f =14. Then

lppy=F(lp)=F(fog)=F(f)oF(g) and lpa)=F(la)=F(go f)=F(g) o F(f)
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so that the morphisms F'(A) D, F(B) and F(B) £, F(A) establish the isomorphism F(A)~

F(B).

Conversely, assume F(A) 2 F(B) and let F(A) — F(B) and F(B) <, F(A) be two morphisms
such that o =1pg) and ¥ o p=1p(a). Since the maps Hom¢(A, B) —Homp(F(A), F(B)) and

Home (B, A) — Homp(F(B), F(A)) are surjective, there exist morphisms A L. Band B A such
that o= F(f) and ¢ = F(g). Thus

Ipgy=pop=F(f)oF(9)=F(fog) and lpay=1op=F(g)oF(f)=F(go f).

On the other hand, F(14) =1p4) and F(1p) = 1g(p). Since the maps Hom¢(A, B) — Homp(F (A),
F(B)) and Hom¢(B, A) — Homp(F(B), F(A)) are injective, this yields

fog=1p and go f=14. O

Definition 7.16. Let C and D be categories. A covariant functor F:C— D is called an equivalence
of categories if it is fully faithful and essentially surjective, that is for every object B € Ob(D)
there is an object A€ Ob(C) such that F(C)=D.

7.3 Category of affine algebraic sets.

Definition 7.17. Let V C k™ and W C k™ be affine algebraic sets. A morphism f:V — W is a
map such that there exist f1,..., fm € k[V] such that f(a)=(fi(a),..., fm(a)), for allacV.

Remark 7.18. Let V C k™ and W C k™ be affine algebraic sets, let fi, ..., fm € k[V]. Then
f=(f1,-y fm):V —W is a morphism if and only if

G(f1y s frm) =0€k[V] for allge Z(W).

Proof. Indeed, one easily checks that

(fi(a1, ooy @n),oeey fm(a1, coyan)) €W < g(fi(at, ..., an), .., fm(a, ...,a,)) =0 for all g € Z(W)
< g(f1, s fm)(a1,...;an) =0 for all g€ Z(W)
< g(f1, s fm) EZ(V) for all geZ(W)
< g(fi, ey fm) =0€k[V] for all g€ Z(W).
0
Example 7.19. Consider the following easy examples.
e Let f€k[V]. Then f:V —k is a morphism.
e Let f:k™— k™ be a linear map. Then f is a morphism.

o Let f:Z(xy—1)—k be given by f(x,y)=x. Then f is a morphism.

o Let f:k— Z(y*—23) be given by f(t)=(t2,¢3). Then f is a morphism.

Example 7.20. One easily checks that:

o Z(y—af)=kvia f(z,y) =z and g(t) = (t,t");
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o fiZ(xy—1)—k given by f(x,y)==2 is not an isomorphism;

o fik— Z(y?—2?) given by f(t)=(¢%t3) is not an isomorphism, even though it is a bijection.

We shall denote k — Aff the category of affine algebraic sets over an algebraically closed field k
with morphisms defined above.

Theorem 7.21. Let k be algebraically closed and consider the categories k — Aff and k — Alg?g.
The assignment

F(V)=E[V] for an affine algebraic set V C k™
and

F(p)=¢* for a morphism of affine algebraic sets o:V —W,
where *: kW] — k[V] is given by the formula
' (f)=goyp
defines an equivalence of categories k — Aff°P and k — Alg(f)g.

Proof. The map F assigns to an affine algebraic set V' C k™ a finitely generated k-algebra with no
nilpotent elements by Theorem 7.5. By the same result F' is also essentially surjective. If o: V —W
is a morphism between affine algebraic sets V and W, and if g € k[W], then go ¢ € k[V]. Moreover,
the map ¢*: k[W] — k[V] is a homomorphism of k-algebras. Thus F' defines a contravariant
functor between categories k — Aff and k — .Alg?g, or, equivalently, a covariant functor between the
categories k — Aff°P and k — .Alg(f)g. It remains to check that it is fully faithful.

Assume that ¢, ¥: V — W are morphisms of affine algebraic sets and that ¢* = ¥*. Say ¢ =
(€1, vy om) and ¢ = (Y1, ..., Um) With @1, ..oy ©m, Y1, ..., Y € k[V]. Consider the element
T, =x1+Z(V) € k[W]. Since 71 0 ¢ = ¢*(T1) = ¢*(T2) = T2 0 ¢ it follows that v1 = 21(¢p1, ...,
©m) = 21(V1, ..., Ym) = Ym. Likewise p; = 1;, for j € {2, ..., m}, so that the map Homy_ 4a(V,
W) — Homk,Alggg(F(V), F(W)) is injective.

Finally, let f: k[W] — k[V] be a homomorphism of k-algebras. We shall show that f = ¢*, for
some morphism ¢:V — W. Indeed, consider the elements Z; =xz; +Z(W), for j€{1,...,m}. Then
w;=f(Z;) €k[V], je{1,...,m}, and consider the map ¢ = (1, ..., om): V — k™. Clearly f=¢* and
all that is left to show is that (V) CW. Fix H € Z(W). Then H(Z1, ..., Tn) =0 in k[W], hence
also f(H)=0onV. Fix (a1,...,a,) € V; then H(p(a1,...,a,)) = f(H)(a1,...,a,) =0, and therefore
olar,....,an) EW. O
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