7 Coordinate ring of an affine algebraic set. Morphisms of affine algebraic sets. Category of affine algebraic sets.

7.1 Coordinate ring of an affine algebraic set.

Definition 7.1. Let k be a field, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. The ring $k[V] := k[x_1, ..., x_n]/\mathcal{I}(V)$ is called the **coordinate ring** of V.

Remark 7.2. Let k be a field, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. Let $f \in k[x_1, ..., x_n]$. The polynomial f defines a polynomial function $k^n \to k$. Let f_V be the restriction of f to the set V, $f_V = f \upharpoonright_V$. Then $f_V = g_V$ if and only if $f + \mathcal{I}(V) = g + \mathcal{I}(V)$.

Proof. Indeed, $f_V = g_V$ means that $f(a_1, ..., a_n) = g(a_1, ..., a_n)$, for all $(a_1, ..., a_n) \in V$, that is $(f - g)(a_1, ..., a_n) = 0$, for all $(a_1, ..., a_n) \in V$, or, equivalently, $f - g \in \mathcal{I}(V)$.

Remark 7.3. Let k be a field, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. Let κ : $k[x_1, ..., x_n] \to k[V]$ be the canonical epimorphism, $\kappa(f) = \overline{f} := f + \mathcal{I}(V)$. Then k[V] is a k-ring finitely generated over k by $\overline{x_1}, ..., \overline{x_2}$.

Remark 7.4. Let k be algebraically closed, $V \subseteq k^n$ an affine algebraic set, $\mathcal{I}(V)$ the ideal of V. Then k[V] has no nonzero nilpotents.

Proof. By Hilbert Nullstellensatz, $\mathcal{I}(V)$ is radical, so that, by Lemma 6.7, $k[V] = k[x_1, ..., x_n] / \mathcal{I}(V)$ has no nonzero nilpotents.

Theorem 7.5. Let k be algebraically closed. Then a k-ring A is isomorphic to a coordinate ring of an affine algebraic set $V \subseteq k^n$ if and only if it is finitely generated over k and has no nonzero nilpotents.

Proof. Let $A = k[t_1, ..., t_n]$ be a ring finitely generated over k with no nonzero nilpotents. The map

$$k[x_1, \dots, x_n] \to A, \qquad f \mapsto f(t_1, \dots, t_n)$$

is a well-defined ring epimorphism. Define by \mathfrak{a} its kernel. The ring $k[x_1, ..., x_n] / \mathfrak{a} \cong A$ has no nonzero nilpotents, hence, by Lemma 6.7, the ideal \mathfrak{a} is radical. Thus $\mathfrak{a} = \mathcal{I}(\mathcal{Z}(\mathfrak{a}))$ and, consequently, $A \cong k[\mathcal{Z}(\mathfrak{a})]$.

Example 7.6. One easily checks that:

- $V = k^n, \ k[V] \cong k[x_1, ..., x_n];$
- $V = \emptyset, \ k[V] \cong 0;$
- $V = \{(a_1, ..., a_n)\}, k[V] \cong k.$

Example 7.7. Let $V = \mathcal{Z}(f)$, where $f \in k[x_1, ..., x_n]$ is square-free and k is algebraically closed. Then $k[V] \cong k[x_1, ..., x_n] / (f) \cong k[\alpha_1, ..., \alpha_n]$ where $f(\alpha_1, ..., \alpha_n) = 0$.

Proof. By Hilbert Nullstellensatz $\mathcal{I}(V) = \mathcal{I}(\mathcal{Z}(f)) = \operatorname{rad}(f)$. One easily checks that $(f) = \operatorname{rad}(f)$ if and only if f is square-free, which follows that $k[V] \cong k[x_1, ..., x_n] / (f) \cong k[\alpha_1, ..., \alpha_n]$, where $\alpha_i = x_i + (f)$, for $i \in \{1, ..., n\}$.

Example 7.8. Let $V = \mathcal{Z}(a_1x_1 + ... + a_nx_n - b)$, where $a_1, ..., a_n, b \in k$ and k is algebraically closed. Then $k[V] \cong k[x_1, ..., x_{n-1}]$.

Proof. As in the previous example, $k[V] \cong k[x_1, ..., x_n] / (a_1x_1 + ... + a_nx_n - b) \cong k[\alpha_1, ..., \alpha_n]$, where $a_1\alpha_1 + ... + a_n\alpha_n = b$. Relabelling, if necessary, we may assume that $a_n \neq 0$. Further, we may assume that $a_n = 1$, since $\mathcal{Z}(a_1x_1 + ... + a_nx_n - b) = \mathcal{Z}\left(\frac{a_1}{a_n}x_1 + ... + \frac{a_n}{a_n}x_n - \frac{b}{a_n}\right)$. Thus

$$\alpha_n = b - a_1 \alpha_1 - \dots - a_{n-1} \alpha_{n-1},$$

and the ring $k[V] \cong k[\alpha_1, ..., \alpha_n]$ is generated by the elements $\alpha_1, ..., \alpha_{n-1}$. If suffices to show that these elements are algebraically independent: indeed, if $g(\alpha_1, ..., \alpha_{n-1}) = 0$, for some $g \in k[x_1, ..., x_{n-1}]$, then

$$\begin{split} \mathcal{I}(V) &= \ 0_{k[V]} = g(\alpha_1,...,\alpha_{n-1}) = g(x_1 + \mathcal{I}(V),...,x_{n-1} + \mathcal{I}(V)) \\ &= \ g(x_1,...,x_{n-1}) + \mathcal{I}(V), \end{split}$$

so that $g \in \mathcal{I}(V) = (h)$, that is h divides g in the ring $k[x_1, ..., x_n]$. But this is impossible, since x_n appears in h with a nonzero coefficient, and does not appear in any of the monomials of g. Thus $\alpha_1, ..., \alpha_{n-1}$ are algebraically independent over k, and thus $k[\alpha_1, ..., \alpha_{n-1}] \cong k[x_1, ..., x_{n-1}]$. \Box

7.2 Basic notions from category theory.

Definition 7.9. A category C consists of a class of objects Ob(C), denoted by A, B, C, ... and a class of morphisms (or arrows) Ar(C) together with:

- 1. classes of pairwise disjoint arrows $\operatorname{Hom}_{\mathcal{C}}(A, B)$, one for each pair of objects $A, B \in \operatorname{Ob}(\mathcal{C})$; and elements f of the class $\operatorname{Hom}_{\mathcal{C}}(A, B)$ shall be called a **morphism** from A to B and denoted by $A \xrightarrow{f} B$ or $f: A \to B$,
- 2. functions $\operatorname{Hom}_{\mathcal{C}}(B, C) \times \operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{C}}(A, C)$, for each triple of objects $A, B, C \in \operatorname{Ob}(\mathcal{C})$, called **composition** of morphisms; for morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ values of this function shall be denoted by $(g, f) \mapsto g \circ f$, and the morphism $A \xrightarrow{g \circ f} C$ shall be called the composition of morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$.

Moreover, we require that the following two axioms hold true:

Associativity. If $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ and $C \xrightarrow{h} D$ are morphisms in C, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Identity. For every object $B \in Ob(\mathcal{C})$ there exists a morphism $B \xrightarrow{1_B} B$ such that for all morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$

$$1_B \circ f = f$$
 and $g \circ 1_B = g$.

If the classes $Ob(\mathcal{C})$ and $Ar(\mathcal{C})$ are sets, we shall call the category \mathcal{C} small. If all classes Hom(A, B) are sets, we shall call the category \mathcal{C} locally small.

Example 7.10.

- 1. We shall set the notation for a number of familiar categories here:
 - Set is the category of sets with functions as morphisms;

- Grp is the category of groups with group homomorphisms as morphisms;
- *T* op is the category of topological spaces with continuous functions as morphisms.
- $\mathcal{A}b$ is the category of Abelian groups;
- Rng is the category of rigns;
- *F*ield is the category of fields;
- $k \mathcal{V}$ ect is the category of k -vector spaces;
- $k A \lg_{fg}^{0}$ is the category of finitely generated k-algebras over an algebraically closed field k with no nonzero nilpotent elements.

All these categories are locally small, but not small.

2. The notion of a category allows for a different take on familiar constructions in mathematics. For example, consider a partial order (P, \leq) . One checks that considering the elements of P as objects, and defining morphisms by

$$a \rightarrow b \qquad \Leftrightarrow \qquad a \leqslant b$$

one obains a category, which is small provided P is a set.

Definition 7.11. Let C be a category. If, for two objects $A, B \in Ob(C)$ there exist morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} A$ such that

$$f \circ g = 1_B$$
 and $g \circ f = 1_A$

then we say that objects A and B are **isomorphic** and write $A \cong B$.

Definition 7.12. Let C and D be categories. A covariant functor F from C to D is a pair of maps $Ob(\mathcal{C}) \to Ob(\mathcal{D})$ and $Ar(\mathcal{C}) \to Ar(\mathcal{D})$ (denoted by the same symbol F), that assign to each object $A \in Ob(\mathcal{C})$ an object $F(A) \in Ob(\mathcal{D})$ and to each morphism $A \xrightarrow{f} B$ in $Ar(\mathcal{C})$ a morphism $F(A) \xrightarrow{F(f)} F(B)$ in $Ar(\mathcal{D})$ in a way that the following two axioms are satisfied:

- 1. $F(1_A) = 1_{F(A)}$, for every object $A \in Ob(\mathcal{C})$;
- 2. $F(g \circ f) = F(g) \circ F(f)$, for all arrows $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ in $Ar(\mathcal{C})$.

A contravariant functor is defined in an analogous way, but to each morphism $A \xrightarrow{f} B$ in $\operatorname{Ar}(\mathcal{C})$ a morphism $F(B) \xrightarrow{F(f)} F(A)$ in $\operatorname{Ar}(\mathcal{D})$ is assigned and the axiom 2. is replaced with:

2'. $F(g \circ f) = F(f) \circ F(g)$, for all arrow $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ in $Ar(\mathcal{C})$.

Example 7.13.

1. Identity functors. For every category \mathcal{C} the map $I_{\mathcal{C}}: \mathcal{C} \to \mathcal{C}$ given by

 $I_{\mathcal{C}}(A) = A$, for every object $A \in Ob(\mathcal{C})$, $I_{\mathcal{C}}(f) = f$, for every morphism $A \xrightarrow{f} B$ in \mathcal{C}

is a covariant functor that shall be called the identity functor.

2. Forgetful functors. The map $F: \mathcal{G}rp \to \mathcal{S}et$ given by

F(G) = G, for every object $G \in Ob(\mathcal{G}rp)$, F(f) = f, for every morphism $G \xrightarrow{f} H$ in $\mathcal{G}rp$

is a covariant functor that shall be called the forgetful functor. In the same way we can define forgetful functors $\mathcal{R}ng \rightarrow \mathcal{S}et$, $\mathcal{T}op \rightarrow \mathcal{S}et$ etc.

3. Free functors. The map $F: \mathcal{S}et \to \mathcal{A}b$ given by

F(X) = free Abelian group with basis X, for every object $X \in Ob(Ab)$,

and

F(f) = the uniquely defined morphism \overline{f} s.t. $\overline{f} \upharpoonright_X = f$, for every morphism $X \xrightarrow{f} Y$ in Set

is a covariant functor that creates free Abelian groups. In the same way we can define free fuctors $Set \rightarrow Grp$ etc.

4. For a category \mathcal{C} we define the **opposite category** \mathcal{C}^{op} as follows: $\text{Ob}(\mathcal{C}^{\text{op}}) = \text{Ob}(\mathcal{C})$, and for $A, B \in \text{Ob}(\mathcal{C}^{\text{op}})$

$$\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(A, B) = \operatorname{Hom}_{\mathcal{C}}(B, A)$$

and

$$f^{\mathrm{op}} \circ g^{\mathrm{op}} = (g \circ f)^{\mathrm{op}}.$$

For example if C consists of the following objects and morphisms:

$$A \to B \to C \to D,$$

then $\mathcal{C}^{\mathrm{op}}$ is of the following form:

$$A \leftarrow B \leftarrow C \leftarrow D.$$

If $F: \mathcal{C} \to \mathcal{D}$ is a contravariant functor, then $\overline{F}: \mathcal{C}^{\mathrm{op}} \to \mathcal{D}$ defined by

$$\overline{F}(A) = F(A)$$
, for every object $A \in Ob(\mathcal{C}^{op}), \overline{F}(f^{op}) = F(f)$, for every morphism $A \xrightarrow{f} B$ in \mathcal{C}

f

is a covariant functor.

Definition 7.14. Let C and D be categories. A covariant functor $F: C \to D$ is **faithful** if for all objects $A, B \in Ob(C)$ the induced function

$$\operatorname{Hom}_{\mathcal{C}}(A,B) \to \operatorname{Hom}_{\mathcal{D}}(F(A),F(B))$$

is injective. If, moreover, it is surjective, then F shall be called fully faithful.

Proposition 7.15. Let C and D be categories, let $F: C \to D$ be a fully faithful functor. Then, for all objects $A, B \in Ob(C)$, $A \cong B$ if and only if $F(A) \cong F(B)$.

Proof. Fix two objects $A, B \in Ob(\mathcal{C})$ and assume that $A \cong B$. Let $A \xrightarrow{f} B$ and $B \xrightarrow{g} A$ be two morphisms such that $f \circ g = 1_B$ and $g \circ f = 1_A$. Then

$$1_{F(B)} = F(1_B) = F(f \circ g) = F(f) \circ F(g)$$
 and $1_{F(A)} = F(1_A) = F(g \circ f) = F(g) \circ F(f)$

so that the morphisms $F(A) \xrightarrow{F(f)} F(B)$ and $F(B) \xrightarrow{F(g)} F(A)$ establish the isomorphism $F(A) \cong F(B)$.

Conversely, assume $F(A) \cong F(B)$ and let $F(A) \xrightarrow{\varphi} F(B)$ and $F(B) \xrightarrow{\psi} F(A)$ be two morphisms such that $\varphi \circ \psi = 1_{F(B)}$ and $\psi \circ \varphi = 1_{F(A)}$. Since the maps $\operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$ and $\operatorname{Hom}_{\mathcal{C}}(B, A) \to \operatorname{Hom}_{\mathcal{D}}(F(B), F(A))$ are surjective, there exist morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} A$ such that $\varphi = F(f)$ and $\psi = F(g)$. Thus

$$1_{F(B)} = \varphi \circ \psi = F(f) \circ F(g) = F(f \circ g) \text{ and } 1_{F(A)} = \psi \circ \varphi = F(g) \circ F(f) = F(g \circ f).$$

On the other hand, $F(1_A) = 1_{F(A)}$ and $F(1_B) = 1_{F(B)}$. Since the maps $\operatorname{Hom}_{\mathcal{C}}(A, B) \to \operatorname{Hom}_{\mathcal{D}}(F(A), F(B))$ and $\operatorname{Hom}_{\mathcal{C}}(B, A) \to \operatorname{Hom}_{\mathcal{D}}(F(B), F(A))$ are injective, this yields

$$f \circ g = 1_B$$
 and $g \circ f = 1_A$.

Definition 7.16. Let C and D be categories. A covariant functor $F: C \to D$ is called an **equivalence** of categories if it is fully faithful and essentially surjective, that is for every object $B \in Ob(D)$ there is an object $A \in Ob(C)$ such that F(C) = D.

7.3 Category of affine algebraic sets.

Definition 7.17. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets. A morphism $f: V \to W$ is a map such that there exist $f_1, ..., f_m \in k[V]$ such that $f(a) = (f_1(a), ..., f_m(a))$, for all $a \in V$.

Remark 7.18. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets, let $f_1, ..., f_m \in k[V]$. Then $f = (f_1, ..., f_m): V \to W$ is a morphism if and only if

$$g(f_1, ..., f_m) = 0 \in k[V]$$
 for all $g \in \mathcal{I}(W)$.

Proof. Indeed, one easily checks that

$$\begin{aligned} (f_1(a_1,...,a_n),...,f_m(a_1,...,a_n)) &\in W \iff g(f_1(a_1,...,a_n),...,f_m(a_1,...,a_n)) = 0 \text{ for all } g \in \mathcal{I}(W) \\ \Leftrightarrow g(f_1,...,f_m)(a_1,...,a_n) = 0 \text{ for all } g \in \mathcal{I}(W) \\ \Leftrightarrow g(f_1,...,f_m) \in \mathcal{I}(V) \text{ for all } g \in \mathcal{I}(W) \\ \Leftrightarrow g(f_1,...,f_m) = 0 \in k[V] \text{ for all } g \in \mathcal{I}(W). \\ \Box \end{aligned}$$

Example 7.19. Consider the following easy examples.

- Let $f \in k[V]$. Then $f: V \to k$ is a morphism.
- Let $f: k^n \to k^m$ be a linear map. Then f is a morphism.
- Let $f: \mathcal{Z}(xy-1) \to k$ be given by f(x, y) = x. Then f is a morphism.
- Let $f: k \to \mathcal{Z}(y^2 x^3)$ be given by $f(t) = (t^2, t^3)$. Then f is a morphism.

Example 7.20. One easily checks that:

• $\mathcal{Z}(y-x^k) \cong k$ via f(x, y) = x and $g(t) = (t, t^k);$

- $f: \mathcal{Z}(xy-1) \to k$ given by f(x, y) = x is not an isomorphism;
- $f: k \to \mathcal{Z}(y^2 x^3)$ given by $f(t) = (t^2, t^3)$ is not an isomorphism, even though it is a bijection.
- * We shall denote k Aff the category of affine algebraic sets over an algebraically closed field k with morphisms defined above.

Theorem 7.21. Let k be algebraically closed and consider the categories k - Aff and $k - A \lg_{fg}^{0}$. The assignment

F(V) = k[V] for an affine algebraic set $V \subseteq k^n$

and

 $F(\varphi) = \varphi^*$ for a morphism of affine algebraic sets $\varphi: V \to W$,

where $\varphi^*: k[W] \to k[V]$ is given by the formula

$$\varphi^*(f) = g \circ \varphi$$

defines an equivalence of categories $k - \mathcal{A}\mathrm{ff}^{\mathrm{op}}$ and $k - \mathcal{A}\mathrm{lg}_{\mathrm{fg}}^{0}$.

Proof. The map F assigns to an affine algebraic set $V \subseteq k^n$ a finitely generated k-algebra with no nilpotent elements by Theorem 7.5. By the same result F is also essentially surjective. If $\varphi: V \to W$ is a morphism between affine algebraic sets V and W, and if $g \in k[W]$, then $g \circ \varphi \in k[V]$. Moreover, the map $\varphi^*: k[W] \to k[V]$ is a homomorphism of k-algebras. Thus F defines a contravariant functor between categories $k - \mathcal{A}$ ff and $k - \mathcal{A} lg_{fg}^0$, or, equivalently, a covariant functor between the categories $k - \mathcal{A} ff^{op}$ and $k - \mathcal{A} lg_{fg}^0$. It remains to check that it is fully faithful.

Assume that $\varphi, \psi: V \to W$ are morphisms of affine algebraic sets and that $\varphi^* = \psi^*$. Say $\varphi = (\varphi_1, ..., \varphi_m)$ and $\psi = (\psi_1, ..., \psi_m)$ with $\varphi_1, ..., \varphi_m, \psi_1, ..., \psi_m \in k[V]$. Consider the element $\bar{x}_1 = x_1 + \mathcal{I}(V) \in k[W]$. Since $\bar{x}_1 \circ \varphi = \varphi^*(\bar{x}_1) = \psi^*(\bar{x}_2) = \bar{x}_2 \circ \psi$ it follows that $\varphi_1 = x_1(\varphi_1, ..., \varphi_m) = x_1(\psi_1, ..., \psi_m) = \psi_m$. Likewise $\varphi_j = \psi_j$, for $j \in \{2, ..., m\}$, so that the map $\operatorname{Hom}_{k-\mathcal{A}\operatorname{lff}}(V, W) \to \operatorname{Hom}_{k-\mathcal{A}\operatorname{lg}_{\operatorname{fe}}^0}(F(V), F(W))$ is injective.

Finally, let $f: k[W] \to k[V]$ be a homomorphism of k-algebras. We shall show that $f = \varphi^*$, for some morphism $\varphi: V \to W$. Indeed, consider the elements $\bar{x}_j = x_j + \mathcal{I}(W)$, for $j \in \{1, ..., m\}$. Then $\varphi_j = f(\bar{x}_j) \in k[V], \ j \in \{1, ..., m\}$, and consider the map $\varphi = (\varphi_1, ..., \varphi_m): V \to k^m$. Clearly $f = \varphi^*$ and all that is left to show is that $\varphi(V) \subseteq W$. Fix $H \in \mathcal{I}(W)$. Then $H(\bar{x}_1, ..., \bar{x}_m) = 0$ in k[W], hence also f(H) = 0 on V. Fix $(a_1, ..., a_n) \in V$; then $H(\varphi(a_1, ..., a_n)) = f(H)(a_1, ..., a_n) = 0$, and therefore $\varphi(a_1, ..., a_n) \in W$.