5 Affine algebraic varietes. Hilbert Nullstellensatz.
5.1 Affine algebraic varietes.

Definition 5.1. A nonempty affine algebraic set V-C k™ will be called an affine algebraic variety
if the ideal Z(V') of the ring k[z1, ..., xs] is prime.

Definition 5.2. A nonempty affine algebraic set V- C k™ will be called irreducible, if for affine
algebraic sets A, B Ck™:

V=AUB=V=AVV=B.

Theorem 5.3. A nonempty affine algebraic set V-C k™ is irreducible if and only if it is an affine
algebraic variety.

Proof. Assume that an affine algebraic set V C k™ is not irreducible. Then V' = AU B, for some
affine algebraic sets A, B Ck™, with V # A and V # B. Since V D A, we see that Z(V) CZ(A). Also,
since V # A, by Remark 4.6.5 Z(V) +Z(A). Thus there exists f € Z(A) with f ¢ Z(V). Likewise,
there exists g € Z(B) with g ¢ Z(V). But fge€Z(V), as for a € V either ¢ € A and then f(a) =0,
or g € B and then g(a) =0 — consequently, fg(a)=0. Therefore the ideal Z(V') is not prime.

Conversely, suppose that V is irreducible and the ideal Z(V') is not prime. Let f, g € k[x1, ..., zp)
be such that fg€Z(V) and f¢Z(V), g¢Z(V). Then

A=Z(f)NV and B=Z(g)NV
are both algebraic sets. We shall show that
V=AUB and V+#A,V+#B.

Indeed, if a € V then, as fge€Z(V), fg(a)= f(a)g(a) =0, so that either f(a)=0 or g(a)=0, and,
consequently, a € A or a € B. Hence VC AUB, and as V D A and V D B, this yields V=AU B.

Moreover, suppose that V =A. Then Z(V)=Z(A), but fe€Z(A) with f¢Z(V). Thus V # A and
similarly V # B. O

Theorem 5.4. FEvery affine algebraic set V is a finite sum of affine algebraic varieties:
V=Wvu..uV, r>1.

If in the above decomposition the varieties V; are incomparable (that is V; ¢ V; for i< j), then they
are uniquely defined.

Proof. We shall prove the existence of such a decomposition first. Let
R ={V Ck" Vis algebraic and not a sum of affine algebraic varieties}.

Suppose R # (). By Remark 4.15 there is a minimal element in R, say Z, which is thus not a sum
of affine algebraic varieties. It is not a variety itself then, and hence is not irreducible. Hence

Z=AUB and Z+A,Z+B,
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for some affine algebraic sets A, B C k™. By the minimality of Z, A, B¢ R, so that both A and B
are sums of affine algebraic varieties. But then so is Z — a contradiction.

For the proof of uniqueness, suppose that
V=viu..uV,=WuU..uUW,,
where V4,..., V., W, ..., W, C k™ are incomparable affine algebraic varieties. For a fixed i € {1,...,r}:
Vi=VnVi=MWU..UW,)NnV,=MWnNV)u..d W;NV,),

and since Vj is a variety, hence an irreducible set, V; = Wy, N'V;, for some k; € {1, ..., s} and, in
particular, V; C W;,. Likewise, for every j € {1,...,s} there exists I; € {1,...,r} such that W; CVj,.
Consequently, as V;’s and Wj’s are incomparable, V; C W, C V}ki leads to i = I, and V; = W},.
Therefore every V; is equal to some of the W;’s and r < s. Likewise, every W is equal to some of

the V;’s and s < r. This together means that »r =s and V4, ..., V,. differ from W, ..., W; at most by
the order of appearance. O

Remark 5.5. Let V C k™ be an affine algebraic variety endowed with the Zariski topology inherited
from k™. Then every nonempty open subset U C V is dense.

Proof. Let U C V be a nonempty open subset of V, and denote by U the closure of U in V.
Then V=UU(V \U) is a decomposition of V into two affine algebraic sets. But as V is a variety
and hence irreducible, it follows that V=U or V=V \ U, the latter case being impossible as U is
nonempty. O

Remark 5.6. Let V C k™ be an affine algebraic variety endowed with the Zariski topology inherited
from k™. Then in V every two nonempty open sets have a nonempty intersection.

Proof. Let U, U CV be two open sets. Thus Uy =V \ V] and Us =V \ V4, for some affine algebraic
sets V1, Vo C k™. But then

V=WMUWKLU[V\W)NT\1A)]=WUlhUUND).

If UyNnUs;=0, then V=V; or V=14, as V is a variety and hence an irreducible set. But since Uy,
U, # (), this is impossible. O

Remark 5.7. Let Speck[z, ..., x| denote the prime spectrum of the ring k[z1, ..., z,], that is
the set of all prime ideals. Let Var k™ denote the set of all affine algebraic varieties in k™. The map

Z:Var k™ — Spec k[z1, ..., xs], V—ZI(V)
is
1. injective,
2. surjective if and only if for every prime ideal p of the ring k[z1, ..., z,

p=I(Z(p))-

Proof. The map 7 is injective by Remark 4.6.5. Assume that the map Z is surjective, that
is for every p € Spec k[z1, ..., zn), p = Z(V), for some affine algebraic variety V C k™. But then
Z(p)=2(Z(V))=V, so that p=Z(Z(p)).
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Conversely, assume that p =Z(Z(p)) for all p € Spec k[z1, ..., z,). But then Z(p) is a variety, and
the ideal p is its image via the map Z. O

5.2 Hilbert Nullstellensatz.

Remark 5.8. Let a < k[zq,...,z,]. Then

aCrad(a) CZ(Z(a)).

Proof. Fix f €rad (a). Then f™ € a, for some m € N. In particular, f™(a) =0, for all a € Z(a),
but then also f(a)=0, for all ¢ € Z(a). Thus fe€Z(Z(a)). O

Theorem 5.9. (Hilbert Nullstellensatz) Let k be algebraically closed, let a<1k[z1,...,xy]. Then
rad(a) =Z(Z(a)).

The proof follows from a series of lemmas which we shall prove now. We will also need some basic
definitions and facts from the theory of extensions of rings.

Definition 5.10. Let B be a domain and let A be a subring of B. An element x € B is integral
over A if there exist ay,...,a, € A such that

a1+ asx+ ... +az” L+ 2" =0;

The set of all elements of B integral over A will be denoted by Cp(A) and called the integral
closure of A in B.

Proposition 5.11. Let B be a domain and let A be a subring of B. Then the integral closure
Cg(A) of A in B forms a ring.

We shall give a somewhat old-fashioned proof here that utilizes the notions of symmetric poly-
nomials®-!, elementary symmetric polynomials®2, and the fundamental theorem on symmetric
polynomials.?3

Proof. Let f=a; + asx + ... + apz" 1 + 2™ € A[z] and let oy, ..., a, be the roots of f in some
larger ring. By the Viete’s formulas

an = 7‘91(0[1; ~~'7an): an71:SQ(0417 ) an)a "'7a1::tSn(a17 ) an)a

5.1. A polynomial P(z1,...,zy) € A[z1, ..., 2y] is symmetric if for every permutation o € S(n):

P(21,.,n) = P(To(1)s -+ To(n))-

5.2. The elementary symmetric polynomials are defined as follows:

S1(z1, .0y zn) = 21+ ...+Tn,

So(x1, .., n) = x1T2+ ... + 1Ty + T2x23+ ... + Ty —1Tn,
Sk(®1, 0y Tn) = Z Ty Ty,
i1 <ia< ... <ip
Sn(z1,...,Tn) = T1... Ty
5.3. Theorem (Fundamental Theorem on Symmetric Polynomials): Every symmetric polynomial P(zq, ...,
Zp) € Alz1, ..., T,] is equal to a polynomial in the elementary symmetric polynomials with coefficients in A, i.e.
P e A[Sy, ..., Sh]-
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that is the elementary symmetric polynomials in roots of f lie in A. Consequently, by the funda-
mental theorem on symmetric polynomials, every symetric polynomial with coefficients from A in
the roots of f lies in A. Moreover, every polynomial g(aq, ..., a,) with coefficients from A in the
roots of f is a root of a monic polynomial in A[z]: indeed, the polynomial

h(z)= H (= g(ag(1)s ey Ao(n)))

oceS(n)

is a monic polynomial whose coefficients are symmetric polynomials in the «;’s, and therefore lie
in A. But g(ay, ..., a;) is one of the roots of h.

Now if a7 and «q are two elements of B integral over A, then there exists a monic polynomial
with coefficients in A having both a7 and as as roots. Take g(aq, as, ...) = a1 £ ag and then
g(a1, ag,...) =a1-as to deduce that these elements are also integral over A. O

Definition 5.12. Let A be a domain and B a subring of A. We say that A is integrally closed
in B if Cp(A)=A. We say that A is integrally closed, if it is integrally closed in its own field
of fractions.

Remark 5.13. Let A be an UFD. Then A is integrally closed.

Proof. Let k be the field of fractions of A. If € Ck(A), then z is a root of a monic polynomial f
with coefficients from A. If z :% with ged (a,b) =1, a,b € A, then a is a divisor of the least, and
b of the highest coefficient of f, so that, in particular, b=+1 and z =+a € A. O

Lemma 5.14. Let k be a subfield of a commutative ring with identity A and let L = k[x, ..., T,
be a subring of A generated by the elements x1,...,x, € A over k. If L is a field, then L is a finite
extension of k.

Proof. We shall proceed by induction on n. For n=1, assume that K =k[z1] is a field. We may
also assume that 1 #0, and thus wil € L. By the definition of L, there exists a polynomial g € k[z]

such that g(z1)= mil Therefore z1g(x1) — 1 =0 which means that the element z; is algebraic over

k. Thus L = k[x4] is a finite extension of k.

For n>1 assume that L =k[x1,...,2,)] is a field. Thus L contains the subfield k(x1) and hence
L=Fk(x1)[z2, ..., Tn).

By the inductive hypothesis the elements s, ..., z,, are algebraic over k(z1) and it suffices to show
that x is algebraic over k.

Suppose then that z; is transcendental over k. The field k(z1) is the field of fractions of the ring
E[z1]. Since g, ..., x,, are algebraic over k(x1), there exist polynomials as(z1), ..., an(x1) € k[z1] such
that the elements as(x1)xa, ..., an(x1)z, are integral over k[z1]. This follows from the following
elementary claim: if x; is a zero of a nonzero polynomial

f=co+ciz+.. . F+cmor1z™ L +a;z™
with coefficients from the ring k[z1], then a;x; is a zero of the polynomial

m—1 m—2 —
coa; + c1a; Ttz L™,
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Clearly all elements of k[z;] are integral over k[zi], so, by Proposition 5.11 the elements
az(z1)ag(x1)-....an(x1)z3, 1 € {2, ..., n}, are integral over k[z1]. Let a(x1) = az(x1)ag(x1)-...-an(z1).
Thus for every f(z1,...,%n) € k[z1, ..., Z,) there exists a sufficiently large s € N such that

a(z1)®f(x1, .., on) = g(z1, a(x1) T2y ...y a(X1)20),

for some polynomial g € k[z1, ..., 2,). In particular, for every element « € k(z1), there exists s €N
such that a(z1)®« is integral over k[z1]. But k[z4] is a PID, hence an UFD, and thus is integrally
closed. Therefore a(z1)°a € k[x1]. This is obviously false, as it means that every rational function
a € k(z1) is of the form

o= h(acl) ’
a(z,)®
for some s € N and h(z1) € k[x1] (1++(m1) is clearly not of that form). This contradiction show

that x; is, in fact, algebraic. O
Lemma 5.15. Let k be algebraically closed, let a <t k[x1, ..., z,] be a proper ideal. Then Z(a)+0.
Proof. Let (1) #a<1k[z1,...,2,]. Let m be a maximal ideal that contains a. Since a Cm, it follows

that Z(a) D Z(m), so that it suffices to show that Z(m)=£0 for every maximal ideal m of k[z1, ..., z,].

Let m < k[z1, ..., ©,] be any maximal ideal. Then L = k[z1, ..., z,]/m is a field. Moreover, L is a
homomorphic image of the ring k[x1, ..., z,] via the canonical epimorphism &: k[x1, ..., z,] — k[z1, ...,
Zn)/m=L. In particular, (k) is a subfield of L isomorphic to k — we shall thus identify elements
a € k with their images a +me L.

The generators 1, ..., &, of the ring k[x1, ..., z,] are mapped by & onto the generators x; +m, ...,
Zn+mof L. Since L is a field, by Lemma 5.14 L is a finite extension of k. But k is algebraically
closed, so that it does not have any proper finite extensions, and thus k= L. In particular z; +m, ...,
n+meE k and it suffices to show that every f €m vanishes at (z;+m,...,z, +m). Indeed:

flrr+m, . zy+m)= f(k(z1),....,5(xn)) =c(f(T1, ..., Tn)) = f+ m=m. O

Lemma 5.16. Let k be algebraically closed, let a={fi,..., fr) <k[x1,...,zn]. Then Z(a)=0 if and
only if there exist polynomials ha, ..., hy € k[x1, ..., 2,) such that

fihit oot fohy=1.

Proof. If the condition of Lemma 5.16 is satisfied, then a = (1) and thus Z(a) = 0. If it is not
satisfied, then a# (1) and by Lemma 5.15 Z(a) # 0. O

Lemma 5.17. Let k be algebraically closed, let a < klx1, ..., x,) and let f € T(Z(a)). Then
f €rad(a).

Proof. The theorem is trivially satisfied when f=0. Assume then f#0 and let a= (f1, ..., fr).
Consider the ring of polynomials in n+ 1 variables k[x1, ..., Zn, 2] and its elements

f17 ey fT7 1- Zf
Let g=1— z-f. The polynomials fi,..., f», ¢ have no common zero in k"*!, as every common zero
of fi,..., frin k"*1is also a zero of f and thus g takes there the value 1. By Lemma 5.16 there

exist polynomials g1, ..., g, h € k[21, ..., T, 2] such that
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We might as well consider this equality holds in the function field k(x1, ..., 2y, z) and then substitute
% for z. This yields

figi+...+ fogr=1,

where the ¢;’s have denominators equal to powers of f. Multiplying both sides by a sufficiently
large power of f we get

fihi+ o+ frho= f™,

for some hq, ..., hy € k[x1, ..., Tp). O

The Nullstellensatz now follows from Lemma 5.17 and Remark 5.8.
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