3 Minimal primary decomposition.

3.1 Radical of an ideal.

Definition 3.1. Let R be a ring, let $\mathfrak{a} \triangleleft R$. The radical of the ideal \mathfrak{a} is defined to be

rad
$$\mathfrak{a} = \{ r \in R | \exists n \in \mathbb{N} r^n \in \mathfrak{a} \}.$$

Remark 3.2. Let *R* be a ring, let $\mathfrak{a} \triangleleft R$. Then rad \mathfrak{a} is an ideal.

Proof. Fix $a, b \in \operatorname{rad} \mathfrak{a}$. Then $a^n \in \mathfrak{a}$ and $b^m \in \mathfrak{a}$, for some $n, m \in \mathbb{N}$. But then

$$\begin{aligned} (a-b)^{n+m-1} &= a^n a^{m-1} + \binom{n+m-1}{1} a^n a^{m-1} b + \ldots + \binom{n+m-1}{m-1} a^n b^{m-1} \\ &+ \binom{n+m-1}{m} a^{n-1} b^m + \binom{n+m-1}{m+1} a^{n-2} b^m b + \ldots + b^{n-1} b^m \in \mathfrak{a}, \end{aligned}$$

which means $a - b \in rad \mathfrak{a}$. Moreover, if $r \in R$, then

$$(ra)^n = r^n a^n \in \mathfrak{a},$$

that is $ra \in rad \mathfrak{a}$.

Remark 3.3. Let *R* be a ring, let $\mathfrak{a}, \mathfrak{b} \triangleleft R$.

- 1. $\mathfrak{a} \subseteq \operatorname{rad} \mathfrak{a}$,
- 2. $\mathfrak{a} \subseteq \mathfrak{b} \Rightarrow \operatorname{rad} \mathfrak{a} \subseteq \operatorname{rad} \mathfrak{b}$,
- 3. rad (rad \mathfrak{a}) = rad \mathfrak{a} ,
- 4. rad $\mathbf{a} \cdot \mathbf{b} = \operatorname{rad} \mathbf{a} \cap \mathbf{b}$,
- 5. rad $\mathfrak{a} \cap \mathfrak{b} = rad \mathfrak{a} \cap rad \mathfrak{b}$,
- 6. rad $\mathfrak{a} = (1) \Leftrightarrow \mathfrak{a} = (1)$,
- 7. rad $\mathfrak{a} + \mathfrak{b} = rad(rad \mathfrak{a} + rad \mathfrak{b})$,
- 8. $\mathfrak{a} + \mathfrak{b} = (1) \Leftrightarrow \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b} = (1).$

Proof. 1. and 2. follow directly from the definiton of a radical.

For the proof of 3., fix $a \in \operatorname{rad}(\operatorname{rad} \mathfrak{a})$. Then $a^n \in \operatorname{rad} \mathfrak{a}$, for some $n \in \mathbb{N}$. But then $a^{nm} = (a^n)^m \in \mathfrak{a}$, for some $m \in \mathbb{N}$, that is $a \in \operatorname{rad} \mathfrak{a}$.

In order to prove 4., as $\mathfrak{a} \cdot \mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$, in view of 2. also rad $\mathfrak{a} \cdot \mathfrak{b} \subseteq \operatorname{rad} \mathfrak{a} \cap \operatorname{rad} \mathfrak{b}$ and it suffices to show the other inclusion. Fix $a \in \operatorname{rad} \mathfrak{a} \cap \mathfrak{b}$. Thus $a^n \in \mathfrak{a} \cap \mathfrak{b}$, for some $n \in \mathbb{N}$, and, consequently, $a^{2n} = a^n a^n \in \mathfrak{a} \cdot \mathfrak{b}$.

To show 5., since $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{a}$ and $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{b}$, by 2. rad $\mathfrak{a} \cap \mathfrak{b} \subseteq \operatorname{rad} \mathfrak{a}$ and rad $\mathfrak{a} \cap \mathfrak{b} \subseteq \operatorname{rad} \mathfrak{b}$, so it suffices to show the other inclusion. Fix $a \in \operatorname{rad} \mathfrak{a} \cap \operatorname{rad} \mathfrak{b}$. Then $a^n \in \mathfrak{a}$ and $a^m \in \mathfrak{b}$, for some $n, m \in \mathbb{N}$. Hence $a^{n+m} = a^n a^m \in \mathfrak{a} \cap \mathfrak{b}$, so that $a \in \operatorname{rad} \mathfrak{a} \cap \mathfrak{b}$.

6. is clear, since $1 \in \operatorname{rad} \mathfrak{a} \Leftrightarrow 1 = 1^n \in \mathfrak{a}$.

To show 6. notice that, as $\mathfrak{a} + \mathfrak{b} = (\mathfrak{a} \cup \mathfrak{b}) \subseteq (\operatorname{rad} \mathfrak{a} \cup \operatorname{rad} \mathfrak{b}) = \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$, one inclusion follows from 2., and it suffices to justify the other one. Fix $a \in \operatorname{rad}(\operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b})$. Then $a^n \in \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$, for some $n \in \mathbb{N}$. Hence $a^n = b + c$ with $b \in \operatorname{rad} \mathfrak{a}$ and $c \in \operatorname{rad} \mathfrak{b}$, that is $b^k \in \mathfrak{a}$ and $c^l \in \mathfrak{b}$, for some $k, l \in \mathbb{N}$. Therefore $a^{n(k+l)} = (a^n)^{k+l} = (b+c)^{k+l} = b^k x + c^l y$, for some $x, y \in R$, that is $a^{n(k+l)} \in \mathfrak{a} + \mathfrak{b}$ and, as a result, $a \in \operatorname{rad}(\mathfrak{a} + \mathfrak{b})$.

Finally, for the proof of 7. firstly observe, that if $1 \in \mathfrak{a} + \mathfrak{b}$ then, by 1. also $1 \in \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$. Conversely, if $1 \in \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$ then, by 1. and 7., $1 \in \operatorname{rad}(\operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}) = \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$. Therefore, by 6., $1 \in \mathfrak{a} + \mathfrak{b}$.

Remark 3.4. Let R be a ring, let $\mathfrak{p} \triangleleft R$ be a prime ideal, let $m \in \mathbb{N}$. Then rad $\mathfrak{p}^m = \mathfrak{p}$.

Proof. Fix $a \in \operatorname{rad} \mathfrak{p}^m$. Then $a^n \in \mathfrak{p}^m$, for some $n \in \mathbb{N}$, and since $\mathfrak{p} \supseteq \mathfrak{p}^2 \supseteq \ldots \supseteq \mathfrak{p}^m$ it follows that $a^n \in \mathfrak{p}$. But as \mathfrak{p} is a prime ideal, this implies $a \in \mathfrak{p}$.

Conversely, fix $a \in \mathfrak{p}$. Then $a^m \in \mathfrak{p}^m$, so that $a \in \operatorname{rad} \mathfrak{p}$.

Definition 3.5. Let R be a ring. The set of all nilpotent elements of R:

$$\operatorname{Nil} R = \{ a \in R | \exists n \in \mathbb{N} a^n = 0 \}$$

is called the nilradical of R.

Remark 3.6. Let *R* be a ring. Then $\operatorname{Nil} R \triangleleft R$.

Proof. Let $a, b \in \text{Nil } R$. Then $a^n = 0$ and $b^m = 0$, for some $n, m \in \mathbb{N}$. Consequently

$$(a+b)^{n+m} = a^{n}a^{m} + \binom{n+m}{1}a^{n}a^{m-1}b + \dots + \binom{n+m}{m}a^{n}b^{m} + \binom{n+m}{m+1}a^{n-1}b^{m}b + \dots + b^{n}b^{m} = 0.$$

so that $a + b \in \operatorname{Nil} R$. Clearly, for $r \in R$, also $(ra)^n = r^n a^n = 0$, hence $ra \in \operatorname{Nil} R$.

Proposition 3.7. Let R be a ring. Then

$$\operatorname{Nil} R = \bigcap \{ \mathfrak{p} | \mathfrak{p} \in \operatorname{Spec} R \}.$$

Proof. Denote $A = \bigcap \{ \mathfrak{p} | \mathfrak{p} \in \operatorname{Spec} R \}$. Fix $a \in \operatorname{Nil} R$, and in order to show that $a \in A$, fix a prime ideal $\mathfrak{p} \triangleleft R$. As $a^n = 0$, for some $n \in \mathbb{N}$, this implies that $a^n = a^{n-1}a = 0 \in \mathfrak{p}$. Since \mathfrak{p} is prime, either $a \in \mathfrak{p}$, or $a^{n-1} \in \mathfrak{p}$ - in the latter case a simple inductive argument follows.

For the other inclusion fix $a \in R$ and assume $a \notin \operatorname{Nil} R$. Thus $a^n \neq 0$, for all $n \in \mathbb{N}$. Let

$$\mathcal{R} = \{ \mathfrak{a} \triangleleft R \mid a^n \notin \mathfrak{a}, \text{ for all } n \in \mathbb{N} \}.$$

By our assumption, $(0) \in \mathcal{R}$. One also easily verifies that if \mathcal{L} is a chain of ideals from \mathcal{L} , then also $\bigcup \mathcal{L} \in \mathcal{R}$. Thus, by Zorn's Lemma, the family \mathcal{R} has a maximal element \mathfrak{p} .

We shall show that \mathfrak{p} is a prime ideal. Fix $x, y \in R$ and assume that both $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$. Then

$$\mathfrak{p} \subsetneq \mathfrak{p} + (x)$$
 and $\mathfrak{p} \subsetneq \mathfrak{p} + (y)$,

which, by the maximality of \mathfrak{p} , means that $\mathfrak{p} + (x), \mathfrak{p} + (y) \notin \mathcal{R}$, that is, for some $n, m \in \mathbb{N}$:

$$a^n \in \mathfrak{p} + (x)$$
 and $a^m \in \mathfrak{p} + (y)$.

But then

$$a^{n+m} \in (\mathfrak{p} + (x)) \cdot (\mathfrak{p} + (y)) = \mathfrak{p}^2 + \mathfrak{p} \cdot (x) + \mathfrak{p} \cdot (y) + (xy).$$

Since $\mathfrak{p}^2 + \mathfrak{p} \cdot (x) + \mathfrak{p} \cdot (y) \subseteq \mathfrak{p}$ this means $a^{n+m} \in \mathfrak{p} + (xy)$. Therefore $\mathfrak{p} + (xy) \notin \mathcal{R}$, and, in particular, $xy \notin \mathfrak{p}$ (for otherwise $\mathfrak{p} + (xy) = \mathfrak{p} \in \mathcal{R}$). This proves that \mathfrak{p} is prime.

Now, $a^n \notin \mathfrak{p}$, for all $n \in \mathbb{N}$, and, in particular, $a \notin \mathfrak{p}$. This means $a \notin A$.

Remark 3.8. Let R be a ring, let $\mathfrak{a} \triangleleft R$. If rad \mathfrak{a} is a maximal ideal, then \mathfrak{a} is primary.

Proof. Let $\mathfrak{m} = \operatorname{rad} \mathfrak{a}$ be a maximal ideal and let $\kappa: R \to R/\mathfrak{a}$ be the canonical epimorphism. Then, for $a \in R$ and $n \in \mathbb{N}$:

$$(a + \mathfrak{a})^n = \overline{0} \in R / \mathfrak{a} \Leftrightarrow a^n \in \mathfrak{a} \Leftrightarrow a \in \mathfrak{m},$$

that is $\kappa(\mathfrak{m})$ equals the nilradical of R/\mathfrak{a} . Since Nil $R/\mathfrak{a} = \bigcap \{\mathfrak{P} \mid \mathfrak{P} \in \operatorname{Spec} R/\mathfrak{a}\}$, it follows that $\kappa^{-1}(\mathfrak{P}) \triangleleft R$ and $\mathfrak{m} \subseteq \kappa^{-1}(\mathfrak{P})$, for $\mathfrak{P} \in \operatorname{Spec} R/\mathfrak{a}$. But, as \mathfrak{m} is maximal, this, in fact, means $\mathfrak{m} = \kappa^{-1}(\mathfrak{P})$, for $\mathfrak{P} \in \operatorname{Spec} R/\mathfrak{a}$. Hence R/\mathfrak{a} contains exactly one prime ideal, which is equal to Nil R/\mathfrak{a} . Consequently, R/\mathfrak{a} contains only one maximal ideal, namely R/\mathfrak{a} . Therefore every element of R/\mathfrak{a} outside Nil R/\mathfrak{a} is a unit, for otherwise it would be contained in one of the maximal ideals of R/\mathfrak{a} . Thus every zero divisor of R/\mathfrak{a} has to be nilpotent, and by Lemma 2.4.ii the ideal \mathfrak{a} is primary.

Lemma 3.9. Let R be a ring, let $q \triangleleft R$ be a primary ideal. Then rad \mathfrak{q} is prime.

Proof. Let $a, b \in R$ and assume that $ab \in \operatorname{rad} \mathfrak{q}$. Thus $a^n b^n = (ab)^n \in \mathfrak{q}$. If $a^n \in \mathfrak{q}$ then $a \in \operatorname{rad} \mathfrak{q}$. If $a^n \notin \mathfrak{q}$, then, as \mathfrak{q} is primary, $b^{nm} = (b^n)^m \in \mathfrak{q}$, for some $m \in \mathbb{N}$. But then $b \in \operatorname{rad} \mathfrak{q}$.

Definition 3.10. Let R be a ring, let $q \triangleleft R$ be a primary ideal and let $\mathfrak{p} = \operatorname{rad} \mathfrak{q}$. Then \mathfrak{q} is called \mathfrak{p} -primary.

Remark 3.11. Let R be a ring, let $\mathfrak{m} \triangleleft R$ be a maximal ideal, let $m \in \mathbb{N}$. Then \mathfrak{m}^m is \mathfrak{m} -primary.

Proof. Let $\mathfrak{m} \triangleleft R$ be a maximal ideal and let $m \in \mathbb{N}$. Then \mathfrak{m} is also prime, and by Remark 3.4 rad $\mathfrak{m}^m = \mathfrak{m}$ is a maximal ideal. But then, by Remark 3.8, it is primary.

Lemma 3.12. Let R be a ring, let $\mathfrak{q}_1, ..., \mathfrak{q}_n$ be \mathfrak{p} -primary. Then $\mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ is \mathfrak{p} -primary.

Proof. Let $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ be p-primary and denote $\mathfrak{q} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$. By Remark 3.3.5

 $\operatorname{rad} \mathfrak{q} = \operatorname{rad} \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n = \operatorname{rad} \mathfrak{q}_1 \cap \ldots \cap \operatorname{rad} \mathfrak{q}_n = \mathfrak{p} \cap \ldots \cap \mathfrak{p} = \mathfrak{p},$

and it remains to show that \mathfrak{q} is primary. Let $a, b \in R$ and assume $ab \in \mathfrak{q}$ with $b \notin \mathfrak{q}$. In particular, $b \notin \mathfrak{q}_{i_0}$ for some $i_0 \in \{1, ..., n\}$. At the same time, $ab \in \mathfrak{q}_{i_0}$ and \mathfrak{q}_{i_0} is primary, so that $a^k \in \mathfrak{q}_{i_0}$, for some $k \in \mathbb{N}$. Thus $a \in \operatorname{rad} \mathfrak{q}_{i_0} = \mathfrak{p}$. But we have already shown that $\mathfrak{p} = \operatorname{rad} \mathfrak{q}$, so that $a^m \in \mathfrak{q}$ for some $m \in \mathbb{N}$. This proves that \mathfrak{q} is primary.

3.2 Minimal primary decomposition.

Definition 3.13. Let R be a ring, let $\mathfrak{a} \triangleleft R$ be a proper ideal and let

$$\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$$

be a primary decomposition of ${\mathfrak a}.\ {\it If}$

$$\mathfrak{q}_{j} \not\supseteq igcap_{i
eq j} \mathfrak{q}_{i}$$

and

rad
$$\mathbf{q}_i \neq$$
 rad \mathbf{q}_j for $i \neq j$,

then the primary decomposition $\mathfrak{a} = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ is called *minimal*.

Theorem 3.14. (Noether-Lasker) Let R be a Noetherian ring, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{q} has a minimal primary decomposition and the prime ideals $\mathfrak{p}_i = \operatorname{rad} \mathfrak{q}_i$ are uniquely determined up to the order.