
3 Minimal primary decomposition.

3.1 Radical of an ideal.

Definition 3.1. Let R be a ring, let a!R. The radical of the ideal a is defined to be

rad a= {r !R| ∃n!Nrn! a}.

Remark 3.2. Let R be a ring, let a!R. Then rad a is an ideal.

Proof. Fix a, b! rad a. Then an! a and bm! a, for some n,m!N. But then

(a− b)n+m−1 = anam−1+
!n+m− 1

1

)
anam−1b+ ...+

!n+m− 1
m− 1

)
anbm−1

+
!n+m− 1

m

)
an−1bm+

!n+m− 1
m+1

)
an−2bmb+ ...+ bn−1bm! a,

which means a− b! rad a. Moreover, if r !R, then

(ra)n= rnan! a,

that is ra! rad a. "

Remark 3.3. Let R be a ring, let a, b!R.

1. a⊆ rad a,

2. a⊆ b⇒ rad a⊆ rad b,

3. rad (rad a)= rad a,

4. rad a·b= rad a∩ b,

5. rad a∩ b= rad a∩ rad b,

6. rad a=(1)⇔ a=(1),

7. rad a+ b= rad(rad a+ rad b),

8. a+ b=(1)⇔ rad a+ rad b=(1).

Proof. 1. and 2. follow directly from the definiton of a radical.

For the proof of 3., fix a! rad(rad a). Then an! rad a, for some n!N. But then anm=(an)m! a,
for some m!N, that is a! rad a.

In order to prove 4., as a·b ⊆ a ∩ b, in view of 2. also rad a·b ⊆ rad a ∩ rad b and it suffices to
show the other inclusion. Fix a ! rad a ∩ b. Thus an ! a ∩ b, for some n !N, and, consequently,
a2n= anan! a·b.

To show 5., since a∩b⊆a and a∩b⊆b, by 2. rada∩b⊆ rada and rada∩b⊆ radb, so it suffices to
show the other inclusion. Fix a! rad a∩ radb. Then an! a and am! b, for some n,m!N. Hence
an+m= anam! a∩ b, so that a! rad a∩ b.

6. is clear, since 1! rad a⇔ 1= 1n! a.
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To show 6. notice that, as a+b=(a∪b)⊆ (rad a∪ radb)= rada+ radb, one inclusion follows from
2., and it suffices to justify the other one. Fix a ! rad(rad a+ rad b). Then an! rad a+ rad b, for
some n!N. Hence an= b+ c with b! rada and c! radb, that is bk!a and cl!b, for some k, l!N.
Therefore an(k+l)=(an)k+l= (b+ c)k+l= bkx+ cly, for some x, y !R, that is an(k+l)! a+ b and,
as a result, a! rad(a+ b).

Finally, for the proof of 7. firstly observe, that if 1 ! a + b then, by 1. also 1 ! rad a + rad b.
Conversely, if 1! rad a+ rad b then, by 1. and 7., 1! rad(rad a+ rad b)= rad a+ rad b. Therefore,
by 6., 1! a+ b. "

Remark 3.4. Let R be a ring, let p!R be a prime ideal, let m!N. Then rad pm= p.

Proof. Fix a ! rad pm. Then an ! pm, for some n !N, and since p) p2) ...) pm it follows that
an! p. But as p is a prime ideal, this implies a! p.

Conversely, fix a! p. Then am! pm, so that a! rad p. "

Definition 3.5. Let R be a ring. The set of all nilpotent elements of R:

NilR= {a!R| ∃n!Nan=0}

is called the nilradical of R.

Remark 3.6. Let R be a ring. Then NilR!R.

Proof. Let a, b!NilR. Then an=0 and bm=0, for some n,m!N. Consequently

(a+ b)n+m = anam+
!
n+m
1

)
anam−1b+ ...+

!
n+m
m

)
anbm

+
!
n+m
m+1

)
an−1bmb+ ...+ bnbm

= 0,

so that a+ b!NilR. Clearly, for r !R, also (ra)n= rnan=0, hence ra!NilR. "

Proposition 3.7. Let R be a ring. Then

NilR=
⋂
{p| p! SpecR}.

Proof. Denote A=
⋂
{p| p!SpecR}. Fix a!NilR, and in order to show that a!A, fix a prime

ideal p!R. As an=0, for some n!N, this implies that an=an−1a=0! p. Since p is prime, either
a! p, or an−1! p – in the latter case a simple inductive argument follows.

For the other inclusion fix a!R and assume a!/ NilR. Thus an=/ 0, for all n!N. Let

R= {a!R| an!/ a, for all n!N}.

By our assumption, (0)!R. One also easily verifies that if L is a chain of ideals from L, then also⋃
L!R. Thus, by Zorn’s Lemma, the family R has a maximal element p.

We shall show that p is a prime ideal. Fix x, y !R and assume that both x!/ p and y !/ p. Then

p! p+(x) and p! p+(y),
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which, by the maximality of p, means that p+(x), p+(y)!/R, that is, for some n,m!N:

an! p+(x) and am! p+(y).

But then

an+m! (p+(x))·(p+(y)) = p2+ p·(x)+ p·(y)+ (xy).

Since p2+p·(x)+p·(y)⊆p this means an+m!p+(xy). Therefore p+(xy)!/R, and, in particular,
xy!/ p (for otherwise p+(xy) = p!R). This proves that p is prime.

Now, an!/ p, for all n!N, and, in particular, a!/ p. This means a!/ A. "

Remark 3.8. Let R be a ring, let a!R. If rad a is a maximal ideal, then a is primary.

Proof. Let m= rada be a maximal ideal and let κ:R→R/a be the canonical epimorphism. Then,
for a!R and n!N:

(a+ a)n= 0̄!R/a⇔ an! a⇔ a!m,

that is κ(m) equals the nilradical of R / a. Since Nil R / a =
⋂
{P| P ! Spec R / a}, it follows

that κ−1(P)!R and m⊆ κ−1(P), for P ! SpecR/a. But, as m is maximal, this, in fact, means
m = κ−1(P), for P ! Spec R/a. Hence R/a contains exactly one prime ideal, which is equal to
Nil R / a. Consequently, R / a contains only one maximal ideal, namely R / a. Therefore every
element of R/a outside NilR/a is a unit, for otherwise it would be contained in one of the maximal
ideals of R/a. Thus every zero divisor of R/a has to be nilpotent, and by Lemma 2.4.ii the ideal
a is primary. "

Lemma 3.9. Let R be a ring, let q!R be a primary ideal. Then rad q is prime.

Proof. Let a, b!R and assume that ab! rad q. Thus anbn=(ab)n! q. If an! q then a! rad q. If
an!/ q, then, as q is primary, bnm=(bn)m! q, for some m!N. But then b! rad q. "

Definition 3.10. Let R be a ring, let q!R be a primary ideal and let p= radq. Then q is called
p-primary.

Remark 3.11. Let R be a ring, let m!R be a maximal ideal, let m!N. Then mm is m-primary.

Proof. Let m!R be a maximal ideal and let m !N. Then m is also prime, and by Remark 3.4
radmm=m is a maximal ideal. But then, by Remark 3.8, it is primary. "

Lemma 3.12. Let R be a ring, let q1, ..., qn be p-primary. Then q1∩ ...∩ qn is p-primary.

Proof. Let q1, ..., qn be p-primary and denote q= q1∩ ...∩ qn. By Remark 3.3.5

rad q= rad q1∩ ...∩ qn= rad q1∩ ...∩ rad qn= p∩ ...∩ p= p,

and it remains to show that q is primary. Let a, b!R and assume ab! q with b!/ q. In particular,
b !/ qi0 for some i0 ! {1, ..., n}. At the same time, ab ! qi0 and qi0 is primary, so that ak ! qi0, for
some k!N. Thus a! radqi0=p. But we have already shown that p= radq, so that am!q for some
m!N. This proves that q is primary. "
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3.2 Minimal primary decomposition.

Definition 3.13. Let R be a ring, let a!R be a proper ideal and let

a= q1∩ ...∩ qn

be a primary decomposition of a. If

qj "
⋂

i=/ j

qi

and

rad qi=/ rad qj for i=/ j ,

then the primary decomposition a= q1∩ ...∩ qn is called minimal.

Theorem 3.14. (Noether-Lasker) Let R be a Noetherian ring, let a!R be a proper ideal. Then
q has a minimal primary decomposition and the prime ideals pi= rad qi are uniquely determined
up to the order.
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