2 Primary decomposition.

2.1 Primary decomposition.

Remark 2.1. Consider the ring \mathbb{Z} and an element $n \in \mathbb{Z}$. Then there exist uniquely determined prime numbers $p_1, ..., p_m$ and exponents $k_1, ..., k_m \in \mathbb{N}$ such that

$$n = \pm p_1^{k_1} \cdot \ldots \cdot p_m^{k_m}$$

or, equivalently:

$$(n) = (p_1^{k_1}) \cdot \ldots \cdot (p_m^{k_m}) = (p_1^{k_1}) \cap \ldots \cap (p_m^{k_m}).$$

Definition 2.2. Let R be any ring. An ideal $q \triangleleft R$ is called **primary**, if $q \neq R$ and for all $a, b \in R$

$$ab \in \mathfrak{q} \land b \notin \mathfrak{q} \Rightarrow \exists n \in \mathbb{N} \quad a^n \in \mathfrak{q}.$$

Example 2.3.

- 1. Every prime ideal is primary.
- 2. An ideal in \mathbb{Z} generated by a power of a prime number is primary.
- 3. Let R be a principal ideal domain. Then q is primary if and only if $q = p^n$, for a prime ideal p.

Proof. 1. and 2. are obvious. In order to show 3., assume that $\mathbf{q} = \mathbf{p}^n$. As R is a PID, it follows that $\mathbf{p} = (p)$, for some prime element $p \in R$. Consequently, $\mathbf{q} = (p)^n = (p^n)$. Say $a \cdot b \in \mathbf{q} = (p^n)$ with $b \notin \mathbf{q} = (p^n)$, for some $a, b \in R$. Then $p^n | a \cdot b$ and $p^n \nmid b$. As a PID, R is a unique factorization domain, so that it follows p | a, and, consequently, $p^n | a$, that is $a^n \in \mathbf{q}$.

Conversely, assume that \mathfrak{q} is primary. Let $\mathfrak{q} = (c)$, for some $c \in R$. Suppose that $c \neq u \cdot p^n$, for all units $u \in U(R)$, all prime elements $p \in R$, and all $n \in \mathbb{N}$. Then, by unique factorization, c is divisible by two different prime elements, say p and q. Let $c = a \cdot b$ with $p \mid a$ and $q \mid b$. Then $c \mid a \cdot b$ and $c \nmid b$, but also $c \nmid a^n$, for all $n \in \mathbb{N}$, which means that $\mathfrak{q} = (c)$ is not primary – a contradiction.

Lemma 2.4. Let R be a ring, let $q \triangleleft R$ be a proper ideal in R. The following conditions are equivalent:

- i. q is primary,
- ii. every zero divisor in R/q is nilpotent,
- iii. the zero ideal in R/\mathfrak{q} is primary.

Proof. It suffices to notice that \mathfrak{q} being primary is equivalent to the following condition in R/\mathfrak{q} :

$$(a+\mathfrak{q})\cdot(b+\mathfrak{q})=\mathfrak{q}\wedge a+\mathfrak{q}\neq\mathfrak{q}\Rightarrow\exists n\in\mathbb{N}\ (a+\mathfrak{q})^n=\mathfrak{q}.$$

Example 2.5. The ideal $(x, y^2) \triangleleft k[x, y]$, where k is any field, is primary, but is not a power of a prime ideal.

Proof. Observe that every polynomial $f(x, y) \in k[x, y]$ can be written as

$$f(x,y) = x \cdot g(x,y) + h(y) = x \cdot g(x,y) + y^2 \cdot h_1(y) + a \cdot y + b,$$

with $g(x, y) \in k[x, y], h(y), h_1(y) \in k[y]$ and $a, b \in k$. It then follows that the map

$$k[x,y]/\mathfrak{q} \rightarrow k[y]/(y^2), \qquad f(x,y) + \mathfrak{q} \mapsto a \cdot y + b + (y^2)$$

is a well-defined ring isomorphism, so that $k[x, y]/\mathfrak{q} \cong k[y]/(y^2)$.

In order to show that \mathfrak{q} is primary, we note that k[y] is a PID, and y is a prime element of k[y], so that, by Example 2.3.3 the ideal (y^2) is primary. Thus, by Lemma 2.4.iii, the zero ideal in the ring $k[y]/(y^2)$ is primary, and so is the zero ideal in the isomorphic ring $k[x, y]/\mathfrak{q}$, leading to \mathfrak{q} being primary.

We proceed to show that \mathfrak{q} is not a power of a prime ideal. Firstly, \mathfrak{q} is not prime itself, as the ring $k[x, y] / \mathfrak{q}$ is not a domain: the isomorphic ring $k[y] / (y^2)$ has zero divisors, for example $(y + (y^2))^2 = (y^2)$. Secondly, suppose that $\mathfrak{q} = \mathfrak{p}^n$, for some prime ideal $\mathfrak{p} \triangleleft k[x, y]$. Since

$$(x,y^2) \,{=}\, \mathfrak{q} \,{=}\, \mathfrak{p}^n \,{\subseteq}\, \mathfrak{p},$$

it follows that $x, y^2 \in \mathfrak{p}$. As \mathfrak{p} is prime, also $y \in \mathfrak{p}$. Consequently, $(x, y) \subseteq \mathfrak{p}$, but as (x, y) is maximal, it follows $(x, y) = \mathfrak{p}$. Thus $\mathfrak{q} = \mathfrak{p}^n = (x, y)^n$. On the other hand

$$(x,y)^2 \subsetneq \mathfrak{q} \subsetneq (x,y),$$

which yields a contradiction.

Definition 2.6. Let R be a ring. An ideal $\mathfrak{n} \triangleleft R$, $0 \neq \mathfrak{n}$ is irreducible if, for all $\mathfrak{a}, \mathfrak{b} \triangleleft R$

$$\mathfrak{n} = \mathfrak{a} \cap \mathfrak{b} \Rightarrow \mathfrak{n} = \mathfrak{a} \lor \mathfrak{n} = \mathfrak{b}.$$

Example 2.7.

- 1. Every maximal ideal is irreducible.
- 2. Every prime ideal is irreducible.
- 3. An ideal $\mathfrak{n} \triangleleft R$ is irreducible if and only if the zero ideal in R/\mathfrak{n} is irreducible.

Proof. 1. is obvious. For the proof of 2., suppose that \mathfrak{p} is a prime ideal of a ring R such that $\mathfrak{p} = \mathfrak{a} \cap \mathfrak{b}$, for some $\mathfrak{a}, \mathfrak{b} \triangleleft R$, with $\mathfrak{p} \subsetneq \mathfrak{a}$ and $\mathfrak{p} \subsetneq \mathfrak{b}$. Then there exist $a \in \mathfrak{a} \setminus \mathfrak{p}$ and $b \in \mathfrak{b} \setminus \mathfrak{p}$. Clearly $a \cdot b \in \mathfrak{p}$ implying $a \in \mathfrak{a}$ or $b \in \mathfrak{p}$, which yields a contradiction.

In order to show 3., assume that \mathfrak{n} is an irreducible ideal of a ring R. Let

$$(\mathfrak{n}) = \mathfrak{A} \cap \mathfrak{B},$$

for some ideals $\mathfrak{A}, \mathfrak{B} \triangleleft R/\mathfrak{n}$. Let $\mathfrak{a} = \kappa^{-1}(\mathfrak{A})$ and $\mathfrak{b} = \kappa^{-1}(\mathfrak{B})$, where κ denotes the canonical epimorphism $\kappa: R \rightarrow R/\mathfrak{n}, a \stackrel{\kappa}{\longmapsto} a + \mathfrak{n}$. Then

$$\mathfrak{n} = \kappa^{-1}((\mathfrak{n})) = \kappa^{-1}(\mathfrak{A}) \cap \kappa^{-1}(\mathfrak{B}) = \mathfrak{a} \cap \mathfrak{b}.$$

As \mathfrak{n} is irreducible, either $\mathfrak{n} = \mathfrak{a}$ or $\mathfrak{n} = \mathfrak{b}$, which leads to $(\mathfrak{n}) = \mathfrak{A}$ or $(\mathfrak{n}) = \mathfrak{B}$.

Conversely, assume that (\mathfrak{n}) is an irreducible ideal in R/\mathfrak{n} . Let

$$\mathfrak{n}\,{=}\,\mathfrak{a}\,{\cap}\,\mathfrak{b},$$

for some ideals $\mathfrak{a}, \mathfrak{b} \triangleleft R$. Let $\mathfrak{A} = \kappa(\mathfrak{a})$ and $\mathfrak{B} = \kappa(\mathfrak{b})$. Then

$$(\mathfrak{n}) = \kappa(\mathfrak{n}) = \kappa(\mathfrak{a} \cap \mathfrak{b}) = \kappa(\mathfrak{a}) \cap \kappa(\mathfrak{b}) = \mathfrak{A} \cap \mathfrak{B};$$

indeed, clearly $\kappa(\mathfrak{a} \cap \mathfrak{b}) \subset \kappa(\mathfrak{a}) \cap \kappa(\mathfrak{b})$, and for the other inclusion fix $\overline{y} \in \kappa(\mathfrak{a}) \cap \kappa(\mathfrak{b})$. Thus $\overline{y} = \kappa(a)$, for some $a \in \mathfrak{a}$, and $\overline{y} = \kappa(b)$, for some $b \in \mathfrak{b}$. Hence $a - b \in \ker \kappa = \mathfrak{n}$, so that a = b + n, for some $n \in \mathfrak{n}$, but as $\mathfrak{n} \subseteq \mathfrak{b}$, this yields $a \in \mathfrak{b}$ and, consequently, $a \in \mathfrak{a} \cap \mathfrak{b}$.

Now, by irreducibility of (\mathfrak{n}) , we either get $(\mathfrak{n}) = \mathfrak{A}$, leading to $\mathfrak{n} = \mathfrak{a}$, or $(\mathfrak{n}) = \mathfrak{B}$, leading to $\mathfrak{n} = \mathfrak{b}$. \Box

Lemma 2.8. Let R be Noetherian. Every irreducible ideal in R is primary.

Proof. Let \mathfrak{n} be an irreducible ideal in a Noetherian ring R. By Lemma 2.4.2 it suffices to show that in the ring A/\mathfrak{n} every zero divisor is nilpotent. Let $\bar{x}, \bar{y} \in R/\mathfrak{n}$ be such that $\bar{x}\bar{y} = \bar{0}$ with $\bar{y} \neq \bar{0}$. For $\bar{t} \in R/\mathfrak{n}$ let

Ann
$$\bar{t} = \{ \bar{z} \in R/\mathfrak{n} | \ \bar{z}\bar{t} = 0 \}.$$

One easily checks that $\operatorname{Ann} \overline{t} \triangleleft R/\mathfrak{n}$, and thus

$$\operatorname{Ann} \bar{x} \subseteq \operatorname{Ann} \bar{x}^2 \subseteq \ldots \subseteq \operatorname{Ann} \bar{x}^n \subseteq \ldots$$

is an ascending chain of ideals. Since R is Noetherian, so is R/\mathfrak{n} , and hence there exists $n \in \mathbb{N}$ such that

$$\operatorname{Ann} \bar{x}^n = \operatorname{Ann} \bar{x}^{n+1} = \dots$$

We claim that $(\bar{x}^n) \cap (\bar{y}) = (\bar{0})$. Indeed, let $\bar{a} \in (\bar{x}^n) \cap (\bar{y})$. Then $\bar{a} = \bar{b} \bar{x}^n$ and $\bar{a} = \bar{c} \bar{y}$, for some \bar{b} , $\bar{c} \in R/\mathfrak{n}$. Hence

$$\bar{b}\bar{x}^{n+1} = \bar{b}\bar{x}^n\bar{x} = \bar{a}\bar{x} = \bar{c}\bar{y}\bar{x} = \bar{c}\bar{0} = \bar{0},$$

so that $\bar{b} \in \operatorname{Ann} \bar{x}^{n+1} = \operatorname{Ann} \bar{x}^n$ and, consequently, $\bar{a} = \bar{b} \bar{x}^n = \bar{0}$. This proves the claim.

By Example 2.7.3 the zero ideal of R/\mathfrak{n} is irreducible. Thus, by the above claim, $(\bar{x}^n) = (\bar{0})$, as $\bar{y} \in (\bar{y})$ and $\bar{y} \neq \bar{0}$. Therefore $\bar{x}^n = \bar{0}$, that is \bar{x} is nilpotent.

Lemma 2.9. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of irreducible ideals.

Proof. Suppose that there exists a nonempty family \mathcal{R} of proper ideals that are not intersections of finite numbers of irreducible ideals. Since R is Noetherian, the family \mathcal{R} contains a maximal element \mathfrak{c} . In particular, \mathfrak{c} is not irreducible. Let $a, b \in R$ with $a, b \notin \mathfrak{c}$ and let $\mathfrak{a} = \mathfrak{c} + (a)$ and $\mathfrak{b} = \mathfrak{c} + (b)$. Then

 $\mathfrak{c} = \mathfrak{a} \cap \mathfrak{b}, \qquad \mathfrak{c} \subsetneq \mathfrak{a}, \qquad \mathfrak{c} \subsetneq \mathfrak{b},$

which means that $\mathfrak{a}, \mathfrak{b} \notin \mathcal{R}$. Thus both \mathfrak{a} and \mathfrak{b} are intersections of finite numbers of irreducible ideals, and so is \mathfrak{c} – a contradiction.

Theorem 2.10. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of primary ideals.

Proof. By Lemma 2.9 every ideal is an intersection of a finite number of irreducible ideals, and by Lemma 2.8 every irreducible ideal in R is primary.