2 Primary decomposition.
2.1 Primary decomposition.

Remark 2.1. Consider the ring Z and an element n € Z. Then there exist uniquely determined
prime numbers py, ..., Py, and exponents ki, ..., ky, € N such that

n—= j:plfl . Km

R

or, equivalently:

(n)=(p}") ... () = (P N .0 (P,

Definition 2.2. Let R be any ring. An ideal q<\R is called primary, if q# R and for alla,b€ R

abeqNbgq=IneN a"€eq.

Example 2.3.
1. Every prime ideal is primary.
2. An ideal in Z generated by a power of a prime number is primary.

3. Let R be a principal ideal domain. Then q is primary if and only if q=p", for a prime ideal p.

Proof. 1. and 2. are obvious. In order to show 3., assume that q=p". As R is a PID, it follows
that p = (p), for some prime element p € R. Consequently, q= (p)" = (p™). Say a-b€ q=(p") with
b¢ q=(p™), for some a,b€ R. Then p"|a-b and p"1b. As a PID, R is a unique factorization domain,
so that it follows p|a, and, consequently, p"| a, that is a™ € q.

Conversely, assume that q is primary. Let q = (¢), for some ¢ € R. Suppose that ¢ # u-p™, for all
units u € U(R), all prime elements p € R, and all n € N. Then, by unique factorization, ¢ is divisible
by two different prime elements, say p and ¢. Let ¢=a-b with p|a and ¢|b. Then c|a-b and c1b,
but also cta”, for all n € N, which means that q=(c) is not primary — a contradiction. O

Lemma 2.4. Let R be a ring, let ¢ < R be a proper ideal in R. The following conditions are
equivalent:

1. ¢ 4§ primary,
ii. every zero divisor in R /q is nilpotent,
iti. the zero ideal in R/q is primary.
Proof. It suffices to notice that q being primary is equivalent to the following condition in R /q:

(a+q)(b+a)=qra+q#q=IneN(a+q)"=q. O

Example 2.5. The ideal (z, y?) <t k[x, y], where k is any field, is primary, but is not a power of
a prime ideal.

Proof. Observe that every polynomial f(z,y) € k[x, y] can be written as

flx,y)=zg(z,y)+h(y) =z-g(z,y) + y*>hi(y) + a-y +b,



with g(z,y) € k[z,y], h(y), h1(y) € kly] and a,b € k. It then follows that the map

Elz,yl/a—klyl/(y?), fl@,y)+a—=ay+b+(y?)

is a well-defined ring isomorphism, so that k[z,y]/q2=k[y]/(v?).

In order to show that q is primary, we note that k[y] is a PID, and y is a prime element of k[y],
so that, by Example 2.3.3 the ideal (y?) is primary. Thus, by Lemma 2.4.iii, the zero ideal in the
ring k[y]/ (y?) is primary, and so is the zero ideal in the isomorphic ring k[z, 3] / q, leading to q
being primary.

We proceed to show that g is not a power of a prime ideal. Firstly, q is not prime itself, as the
ring k[z, y] /q is not a domain: the isomorphic ring k[y] / (y?) has zero divisors, for example
(y+ (¥?)?= (y?). Secondly, suppose that q=p", for some prime ideal p <1 k[z, y]. Since

(z,y%)=q=p"Cp,

it follows that =, y? € p. As p is prime, also y € p. Consequently, (x,y) Cp, but as (z,y) is maximal,
it follows (z,y) =p. Thus q=p" = (z, y)™. On the other hand

(z,9)?Cac(z,y),
which yields a contradiction. O
Definition 2.6. Let R be a ring. An ideal n << R, 0#n is srreducible if, for all a,b<1R

n=anNb=n=aVvVn=>ot.

Example 2.7.
1. Every maximal ideal is irreducible.
2. Every prime ideal is irreducible.

3. An ideal n< R is irreducible if and only if the zero ideal in R /n is irreducible.

Proof. 1. is obvious. For the proof of 2., suppose that p is a prime ideal of a ring R such that
p=anb, for some a,b < R, with p Ca and p Cb. Then there exist a€a\p and b€ b\ p. Clearly
a-b €p implying a € a or b € p, which yields a contradiction.

In order to show 3., assume that n is an irreducible ideal of a ring R. Let
(n)=2ANDB,

for some ideals A, B < R/n. Let a = x~1(A) and b = x~(B), where x denotes the canonical
epimorphism k: R— R /n, ar—a+n. Then

n=r"H(n) =1 RA)NK"YB)=anb.

As n is irreducible, either n=a or n=b, which leads to (n) =% or (n) =%.

Conversely, assume that (n) is an irreducible ideal in R /n. Let

n=anb,



for some ideals a,b < R. Let 2A=k(a) and B =k(b). Then
(n) =k(n)=r(anb)=r(a)Nk(b) =ANDB;

indeed, clearly x(aNb) C x(a)Nk(b), and for the other inclusion fix 7€ x(a) Nk(b). Thus y=k(a),
for some a € a, and 7 = £(b), for some b € b. Hence a — b € ker k =n, so that a = b+ n, for some
n €n, but as n C b, this yields a € b and, consequently, a €anb.

Now, by irreducibility of (n), we either get (n) =%, leading to n=a, or (n) =9, leading to n="6. O
Lemma 2.8. Let R be Noetherian. FEvery irreducible ideal in R is primary.

Proof. Let n be an irreducible ideal in a Noetherian ring R. By Lemma 2.4.2 it suffices to show
that in the ring A /n every zero divisor is nilpotent. Let Z, § € R/n be such that Z§ =0 with § 0.
For t € R/n let

Amnt={ze R/n|zt =0}.
One easily checks that Annt < R/n, and thus
AnmzZCAmz2C...C Annz" C ...
is an ascending chain of ideals. Since R is Noetherian, so is R /n, and hence there exists n € N such

that

Anmnz"=Ammz"t1=...

We claim that (") N (7) = (0). Indeed, let @ € (") N (). Then a=b 2" and a= ¢ 7, for some b,
¢ € R/n. Hence

bzt =bz"Z = az = ¢z =c0 =0,
so that b € Ann z"*! = Ann " and, consequently, @=bz"=0. This proves the claim.

By Example 2.7.3 the zero ideal of R /n is irreducible. Thus, by the above claim, (z") = (0), as
7 € (y) and §#0. Therefore " =0, that is Z is nilpotent. O

Lemma 2.9. Let R be Noetherian, let a <A R be a proper ideal. Then a is an intersection of a finite
number of irreducible ideals.

Proof. Suppose that there exists a nonempty family R of proper ideals that are not intersections of
finite numbers of irreducible ideals. Since R is Noetherian, the family R contains a maximal element
¢. In particular, ¢ is not irreducible. Let a,b€ R with a,b¢ ¢ and let a=c¢+ (a) and b=c+ (b). Then

c=anb, cCa, cChb,

which means that a, b ¢ R. Thus both a and b are intersections of finite numbers of irreducible
ideals, and so is ¢ — a contradiction. O

Theorem 2.10. Let R be Noetherian, let a << R be a proper ideal. Then a is an intersection of a
finite number of primary ideals.

Proof. By Lemma 2.9 every ideal is an intersection of a finite number of irreducible ideals, and
by Lemma 2.8 every irreducible ideal in R is primary. ]



