
2 Primary decomposition.

2.1 Primary decomposition.

Remark 2.1. Consider the ring Z and an element n !Z. Then there exist uniquely determined
prime numbers p1, ..., pm and exponents k1, ..., km!N such that

n=±p1k1 · ... · pmkm

or, equivalently:

(n)= (p1
k1) · ... · (pmkm)= (p1

k1)∩ ...∩ (pmkm).

Definition 2.2. Let R be any ring. An ideal q!R is called primary, if q=/ R and for all a, b!R

ab! q∧ b!/ q⇒∃n!N an! q.

Example 2.3.

1. Every prime ideal is primary.

2. An ideal in Z generated by a power of a prime number is primary.

3. Let R be a principal ideal domain. Then q is primary if and only if q=pn, for a prime ideal p.

Proof. 1. and 2. are obvious. In order to show 3., assume that q= pn. As R is a PID, it follows
that p=(p), for some prime element p!R. Consequently, q=(p)n=(pn). Say a·b! q=(pn) with
b!/ q=(pn), for some a, b!R. Then pn|a·b and pn ! b. As a PID, R is a unique factorization domain,
so that it follows p| a, and, consequently, pn| a, that is an! q.

Conversely, assume that q is primary. Let q= (c), for some c !R. Suppose that c=/ u·pn, for all
units u!U(R), all prime elements p!R, and all n!N. Then, by unique factorization, c is divisible
by two different prime elements, say p and q. Let c= a·b with p| a and q| b. Then c| a·b and c ! b,
but also c ! an, for all n!N, which means that q=(c) is not primary – a contradiction. "

Lemma 2.4. Let R be a ring, let q ! R be a proper ideal in R. The following conditions are
equivalent:

i. q is primary,

ii. every zero divisor in R/q is nilpotent,

iii. the zero ideal in R/q is primary.

Proof. It suffices to notice that q being primary is equivalent to the following condition in R/q:

(a+ q)·(b+ q) = q∧ a+ q=/ q⇒∃n!N (a+ q)n= q. "

Example 2.5. The ideal (x, y2)! k[x, y], where k is any field, is primary, but is not a power of
a prime ideal.

Proof. Observe that every polynomial f(x, y)! k[x, y] can be written as

f(x, y)=x·g(x, y)+h(y) =x·g(x, y)+ y2·h1(y) + a·y+ b,
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with g(x, y)! k[x, y], h(y), h1(y)! k[y] and a, b! k. It then follows that the map

k[x, y]/q→ k[y]/(y2), f(x, y)+ q '→ a·y+ b+(y2)

is a well-defined ring isomorphism, so that k[x, y]/q=∼ k[y]/(y2).

In order to show that q is primary, we note that k[y] is a PID, and y is a prime element of k[y],
so that, by Example 2.3.3 the ideal (y2) is primary. Thus, by Lemma 2.4.iii, the zero ideal in the
ring k[y] / (y2) is primary, and so is the zero ideal in the isomorphic ring k[x, y] /q, leading to q
being primary.

We proceed to show that q is not a power of a prime ideal. Firstly, q is not prime itself, as the
ring k[x, y] / q is not a domain: the isomorphic ring k[y] / (y2) has zero divisors, for example
(y+(y2))2=(y2). Secondly, suppose that q= pn, for some prime ideal p! k[x, y]. Since

(x, y2)= q= pn) p,

it follows that x, y2!p. As p is prime, also y!p. Consequently, (x, y))p, but as (x, y) is maximal,
it follows (x, y)= p. Thus q= pn=(x, y)n. On the other hand

(x, y)2" q" (x, y),

which yields a contradiction. "

Definition 2.6. Let R be a ring. An ideal n!R, 0=/ n is irreducible if, for all a, b!R

n= a∩ b⇒ n= a∨ n= b.

Example 2.7.

1. Every maximal ideal is irreducible.

2. Every prime ideal is irreducible.

3. An ideal n!R is irreducible if and only if the zero ideal in R/n is irreducible.

Proof. 1. is obvious. For the proof of 2., suppose that p is a prime ideal of a ring R such that
p= a∩ b, for some a, b!R, with p" a and p" b. Then there exist a! a \ p and b! b \ p. Clearly
a·b! p implying a! a or b! p, which yields a contradiction.

In order to show 3., assume that n is an irreducible ideal of a ring R. Let

(n)=A∩B,

for some ideals A, B ! R / n. Let a = κ−1(A) and b = κ−1(B), where κ denotes the canonical
epimorphism κ:R→R/n, a '→'→'→'→'→'→'→'→'→'→κ a+ n. Then

n=κ−1((n))=κ−1(A)∩ κ−1(B)= a∩ b.

As n is irreducible, either n= a or n= b, which leads to (n)=A or (n)=B.

Conversely, assume that (n) is an irreducible ideal in R/n. Let

n= a∩ b,
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for some ideals a, b!R. Let A=κ(a) and B=κ(b). Then

(n) =κ(n)=κ(a∩ b)=κ(a)∩ κ(b)=A∩B;

indeed, clearly κ(a∩b)⊂κ(a)∩κ(b), and for the other inclusion fix y!κ(a)∩κ(b). Thus y=κ(a),
for some a ! a, and y = κ(b), for some b ! b. Hence a , b ! ker κ= n, so that a= b+ n, for some
n! n, but as n) b, this yields a! b and, consequently, a! a∩ b.

Now, by irreducibility of (n), we either get (n)=A, leading to n=a, or (n)=B, leading to n=b. "

Lemma 2.8. Let R be Noetherian. Every irreducible ideal in R is primary.

Proof. Let n be an irreducible ideal in a Noetherian ring R. By Lemma 2.4.2 it suffices to show
that in the ring A/n every zero divisor is nilpotent. Let x̄, ȳ!R/n be such that x̄ȳ=0̄ with ȳ=/ 0̄.
For t̄ !R/n let

Ann t̄ = {z̄ !R/n| z̄t̄ =0}.

One easily checks that Ann t̄ !R/n, and thus

Ann x̄)Ann x̄2) ...)Ann x̄n) ...

is an ascending chain of ideals. Since R is Noetherian, so is R/n, and hence there exists n!N such
that

Ann x̄n=Ann x̄n+1= ....

We claim that (x̄n) ∩ (ȳ) = (0̄). Indeed, let ā ! (x̄n) ∩ (ȳ). Then ā= b̄ x̄n and ā= c̄ ȳ, for some b̄ ,
c̄ !R/n. Hence

b̄x̄n+1= b̄x̄nx̄= āx̄= c̄ȳx̄= c̄0̄ = 0̄,

so that b̄ !Ann x̄n+1=Ann x̄n and, consequently, ā= b̄x̄n= 0̄. This proves the claim.

By Example 2.7.3 the zero ideal of R/n is irreducible. Thus, by the above claim, (x̄n) = (0̄), as
ȳ ! (ȳ) and ȳ=/ 0̄. Therefore x̄n= 0̄, that is x̄ is nilpotent. "

Lemma 2.9. Let R be Noetherian, let a!R be a proper ideal. Then a is an intersection of a finite
number of irreducible ideals.

Proof. Suppose that there exists a nonempty familyR of proper ideals that are not intersections of
finite numbers of irreducible ideals. SinceR is Noetherian, the familyR contains a maximal element
c. In particular, c is not irreducible. Let a, b!R with a, b!/ c and let a= c+(a) and b= c+(b). Then

c= a∩ b, c" a, c" b,

which means that a, b !/ R. Thus both a and b are intersections of finite numbers of irreducible
ideals, and so is c – a contradiction. "

Theorem 2.10. Let R be Noetherian, let a!R be a proper ideal. Then a is an intersection of a
finite number of primary ideals.

Proof. By Lemma 2.9 every ideal is an intersection of a finite number of irreducible ideals, and
by Lemma 2.8 every irreducible ideal in R is primary. "
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