1 Noetherian rings.
1.1 Noetherian rings.

Theorem 1.1. Let R be a ring. The following conditions are quivalent:
(FG). ! Every ideal of the ring R is finitely generated.
(ACC). 2 Every ascending chain of ideals in R is finite.

(MAX). Every nonempty family of ideals of the ring R has a mazimal element.

Proof. (FG)=-(ACC): Let I; CI>C ... be an ascending chain of ideals in R. Let J =J;2, I.
Then J < R and, by (FG), J= (a1, ...,a,). Thus for every k€ {1,...,n} there exists I;, such that
ar € I;,. Let m=max{ig|k€{1,...,n}}. Then ay,...,an € Iy, so that J=(ay,...,an) C I,. On the
other hand I,,, C | J;=, I;=J, and hence J = I,,,. Moreover

oo
J =Ly Clyi1 Clyi2C..C | L=,
i=1
so ;=1I,=J, for | >m.
(ACC)= (MAX):Let R+0 be a nonempty family of ideals of the ring R. Fix [y € R. If I} is
not maximal in R, then there is Is € R such that I; C I». If I5 is not maximal in R, then there is

I3 € R such that I C I3. Continuing that way, had we not came across an ideal maximal in R, we
would eventually build an infitite ascending chain of ideals I; C I> C ..., contrary to (ACC).

(MAX) = (FG): Let J < R. Fix a1 € J. If (a1) # J, then there is an az € J \ (a1). If
(a1,a2) # J, then there is an az € J \ {a1,a2}. Continuing that way, we eventually obtain a family
R={(a1,...,as)| (a1, ...,a;) CJ,t € N}. By (M AX), R contains a maximal element (a1, ..., ar),
so that every element a € J belongs to (ay, ...,a,). Hence J = (aq,..., a,). d

Definition 1.2. Let R be a ring. If one (and hence every) condition of Theorem 1.1 is satisfied,
then R is called a noetherian ring.

Lemma 1.3. Let R and S be rings and let R be noetherian. Let p: R — S be an epimorphism.
Then S is noetherian.

Proof. Let J <t S. Then ¢~ '(J) < R is finitely generated, ¢ ~(J) = (a1, ..., a,). As ¢ is an
epimorphism, J = ¢o o 1(J) = p((a1,...,a,)) = (¢(a1), ..., (ay)) is finitely generated. O

Corollary 1.4. Let R be noetherian, let I <R. Then R/I is noetherian.
Proof. R/I is a surjective image of R via the canonical epimorphism x: R— R/ 1. O
1.2 Hilbert basis theorem.

Theorem 1.5. (Hilbert basis theorem) Let R be noetherian. Then R[x] is noetherian.

1.1. finitely generated

1.2. ascending chain condition



Proof. We shall shwo that R[z] satisfies (FFG). For that purpose, fix an I < R[z]. As I can be
decomposed into the union of sets consisting of polynomials of fixed degrees, let

Ii:{aER\Ela[,,“_@i_ieRaaci—}—ai,lazi*l+...+a1:p+aoel}u{0},i€N.
One easily checks that I; < R. Observe that I; C I;1q, for i € N. Indeed, fix an i € N. If

f=ax'+a;_1x" ' +...+ax+ag€l and a€l;, then z f =azx*t +a;_12° 4+ ... + a2+ agz €1
and hence a € I; 4.

Since R is noetherian, by (ACC) there exists a r € N such that I, =1,41=... . By (FG):
I() = (CL()17 ...,aon)
I = (ai1,...,a1n)
IT’ = (a?"17 "'7a7”n)7

where, for the sake of simplicity, we allow some of the a;; to be 0. Let
ot (i5) pi—1 (25) (27)
fij=aix* +a; 22+ Fayr+ay €1
It suffices to show that I = (fo1, .., fon, f115 -+, fins «-es fr1y --o, frn). The inclusion (D) is obvious,

and for the other one denote J = (fo1, ..., fon, f11s--s f1ny eoes friyeeey frn). Fix f €1 and let deg f =d.
We shall proceed by induction on d. If d=0, then f=a, for some a € R, so that f € (fo1,..., fon)-

For d > 1, assume that for all polynomials g € I of degree less than d, g € J. If r > d, then there
are ey, ..., ep,€R such that

h=f—(eifa+..+enfin) €l

and deg h < d. Therefore he J and f € J.

If » <d, then degz?~"f,1 =... =deg % " f,,, = d and the ideal I, is being generated by the leading
coefficients of these polynomials. Since I, = I; and the leading coefficient of f belongs to Iy, it is
a linear combination of the generators of I,.. Thus there are ¢y, ..., ¢, € R such that

g=f— (¥ " fr+ . cnx? ) €T

and deg g <d. Therefore g€ J and f € J. |

Corollary 1.6. Let R be noetherian. Then R[x1,...,xy] is noetherian.



