7 Morphisms of affine algebraic sets. Category of affine algebraic sets. Isomorphisms of affine algebraic sets.

7.1 Morphisms of affine algebraic sets.

Definition 7.1. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets. A morphism $f: V \to W$ is a map such that there exist $f_1, ..., f_m \in k[V]$ such that $f(a) = (f_1(a), ..., f_m(a))$, for all $a \in V$.

Remark 7.2. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets, let $f_1, ..., f_m \in k[V]$. Then $f = (f_1, ..., f_m): V \to W$ is a morphism if and only if

 $g(f_1, ..., f_m) = 0 \in k[V]$ for all $g \in \mathcal{I}(W)$.

Example 7.3.

- Let $f \in k[V]$. Then $f: V \to k$ is a morphism.
- Let $f: k^n \rightarrow k^m$ be a linear map. Then f is a morphism.
- Let $f: \mathcal{Z}(xy-1) \to k$ be given by f(x, y) = x. Then f is a morphism.
- Let $f: k \to \mathcal{Z}(y^2 x^3)$ be given by $f(t) = (t^2, t^3)$. Then f is a morphism.

7.2 Category of affine algebraic sets.

Definition 7.4. A category C consists of a class of objects Ob(C), denoted by A, B, C, ...and a class of morphisms (or arrows) Ar(C) together with:

- 1. classes of pairwise disjoint arrows Hom(A, B), one for each pair of objects $A, B \in \text{Ob}(\mathcal{C})$; and elements f of the class Hom(A, B) shall be called a **morphism** from A to B and denoted by $A \xrightarrow{f} B$ or $f: A \to B$,
- 2. functions $\operatorname{Hom}(B, C) \times \operatorname{Hom}(A, B) \to \operatorname{Hom}(A, C)$, for each triple of objects $A, B, C \in \operatorname{Ob}(\mathcal{C})$, called **composition** of morphisms; for morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$ values of this function shall be denoted by $(g, f) \mapsto g \circ f$, and the morphism $A \xrightarrow{g \circ f} C$ shall be called the composition of morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$.

Moreover, we require that the following two axioms hold true:

Associativity. If $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ and $C \xrightarrow{h} D$ are morphisms in C, then

 $h \circ (g \circ f) = (h \circ g) \circ f.$

Identity. For every object $B \in Ob(\mathcal{C})$ there exists a morphism $B \xrightarrow{1_B} B$ such that for all morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$

 $1_B \circ f = f \text{ and } g \circ 1_B = g.$

If the classes $Ob(\mathcal{C})$ and $Ar(\mathcal{C})$ are sets, we shall call the category \mathcal{C} small. If all classes Hom(A, B) are sets, we shall call the category \mathcal{C} locally small.

Remark 7.5. Affine algebraic sets with morphisms defined in the previous section for a category.

7.3 Isomorphisms of affine algebraic sets.

Definition 7.6. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets. A morphism $f: V \to W$ shall be called an **isomorphism** is there exists a morphism $g: W \to V$ such that

 $f \circ g = \operatorname{id}_W$ and $g \circ f = \operatorname{id}_V$.

If there exists an isomorphism $f: V \to W$, we shall call the sets V and W **isomorphic** and denote $V \cong W$.

Example 7.7.

- $\mathcal{Z}(y-x^k) \cong k$ via f(x,y) = x and $g(t) = (t,t^k)$.
- $f: \mathcal{Z}(xy-1) \rightarrow k$ given by f(x, y) = x is not an isomorphism.
- $f: k \to \mathcal{Z}(y^2 x^3)$ given by $f(t) = (t^2, t^3)$ is not an isomorphism, even though it is a bijection.