5 Applications of Nullstellensatz. Maximal ideals in polynomial rings. Radical ideals.

5.1 Decomposition of affine algebraic sets into affine algebraic varieties.

Proposition 5.1. Let k be algebraically closed, let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$, and let

 $\mathfrak{a} = \mathfrak{q}_1 \cdot \ldots \cdot \mathfrak{q}_m = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_m.$

be the primary decomposition of \mathfrak{a} with the prime ideals $\mathfrak{p}_i = \operatorname{rad}(\mathfrak{q}_i)$. Then $\mathcal{Z}(\mathfrak{q}_i)$ are affine algebraic varieties.

5.2 Maximal ideals in polynomial rings.

Lemma 5.2. Let A be a commutative ring, let $f \in A[x_1, ..., x_n]$. If $f(a_1, ..., a_n) = 0$ for some $(a_1, ..., a_n) \in k^n$, then there exist polynomials $g_1, ..., g_n \in A[x_1, ..., x_n]$ such that

 $f = (x_1 - a_1)g_1 + \dots + (x_n - a_n)g_n.$

Proposition 5.3. Let k be algebraically closed and let $\mathfrak{m} \triangleleft k[x_1, ..., x_n]$. Then \mathfrak{m} is maximal if and only if $\mathfrak{m} = (x_1 - a_1, ..., x_n - a_n)$, for some $a_1, ..., a_n \in k$.

Corollary 5.4. Let k be algebraically closed.

1. If $\mathfrak{m} \triangleleft k[x_1, ..., x_n]$ is a maximal ideal, then $\mathcal{Z}(\mathfrak{m})$ is a singleton.

2. For every $\underline{a} \in k^n$ the ideal $\mathcal{I}(\underline{a})$ is maximal.

Proposition 5.5. Let k be algebraically closed. The map

$$\mathcal{I}: \operatorname{Var} k^n \to \operatorname{Spec} k[x_1, ..., x_n], \qquad V \mapsto \mathcal{I}(V)$$

is a bijection. In particular singleton sets are mapped onto maximal ideals, and the inverse map is given by

 \mathcal{Z} : Spec $k[x_1, ..., x_n] \to \operatorname{Var} k^n$, $\mathfrak{p} \mapsto \mathcal{Z}(\mathfrak{p})$.

5.3 Radical ideals.

Definition 5.6. An ideal \mathfrak{a} of a ring A is called **radical**, if $\mathfrak{a} = \operatorname{rad}(\mathfrak{a})$.

Lemma 5.7. Let A be a ring. An ideal $\mathfrak{a} \triangleleft A$ is radical if and only if the ring A / \mathfrak{a} does not have nonzero nilpotents.

Proposition 5.8. Let k be algebraically closed and let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$. Then \mathfrak{a} is radical if and only if $\mathfrak{a} = \mathcal{I}(V)$ for some affine algebraic set $V \subset k^n$.

Proposition 5.9. Let k be algebraically closed and let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$ be a radical ideal. Then \mathfrak{a} has a unique decomposition into prime ideals $\mathfrak{p}_1, ..., \mathfrak{p}_r \triangleleft k[x_1, ..., x_n]$:

 $\mathfrak{a} = \mathfrak{p}_1 \cap \ldots \cap \mathfrak{p}_r \quad with \, \mathfrak{p}_i \not\subseteq \mathfrak{p}_j, for \, i \neq j.$