4 Affine algebraic varietes. Hilbert Nullstellensatz.

4.1 Affine algebraic varietes.

Definition 4.1. A nonempty affine algebraic set $V \subseteq k^n$ will be called an **affine algebraic** variety if the ideal $\mathcal{I}(V)$ of the ring $k[x_1, ..., x_n]$ is prime.

Definition 4.2. A nonempty affine algebraic set $V \subseteq k^n$ will be called **irreducible**, if for affine algebraic sets $A, B \subseteq k^n$:

 $V = A \cup B \Rightarrow V = A \lor V = B.$

Theorem 4.3. A nonempty affine algebraic set $V \subseteq k^n$ is irreducible if and only if it is an affine algebraic variety.

Theorem 4.4. Every affine algebraic set A is a finite sum of affine algebraic varieties:

 $A = V_1 \cup \ldots \cup V_r, \quad r \ge 1.$

If in the above decomposition the varieties V_i are incomparable (that is $V_i \notin V_j$ for $i \neq j$), then they are uniquely defined.

Remark 4.5. Let $V \subseteq k^n$ be an affine algebraic variety endowed with the Zariski topology inherited from k^n . Then in V every two nonempty open sets have a nonempty intersection.

Remark 4.6. Let Spec $k[x_1, ..., x_n]$ denote the **prime spectrum** of the ring $k[x_1, ..., x_n]$, that is the set of all prime ideals. Let Var k^n denote the set of all affine algebraic varieties in k^n . The map

$$\mathcal{I}: \operatorname{Var} k^n \to \operatorname{Spec} k[x_1, ..., x_n], \quad V \mapsto \mathcal{I}(V)$$

is

1. injective,

2. surjective if and only if for every prime ideal \mathfrak{p} of the ring $k[x_1,...,x_n]$

 $\mathfrak{p} = \mathcal{I}(\mathcal{Z}(\mathfrak{p})).$

4.2 Hilbert Nullstellensatz.

Remark 4.7. Let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$. Then

 $\mathfrak{a} \subseteq \operatorname{rad}(\mathfrak{a}) \subseteq \mathcal{I}(\mathcal{Z}(\mathfrak{a})).$

Theorem 4.8. (Hilbert Nullstellensatz) Let k be algebraically closed, let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$. Then $rad(\mathfrak{a}) = \mathcal{I}(\mathcal{Z}(\mathfrak{a}))$. **Definition 4.9.** Let *B* be a domain and let *A* be a subring of *B*. An element $x \in B$ is **integral** over *A* if there exist $a_1, ..., a_n \in A$ such that

 $a_1 + a_2 x + \ldots + a_n x^{n-1} + x^n = 0;$

The set of all elements of *B* integral over *A* will be denoted by $C_B(A)$ and called the **integral** closure of *A* in *B*.

Proposition 4.10. Let *B* be a domain and let *A* be a subring of *B*. Then the integral closure $C_B(A)$ of *A* in *B* forms a ring.

Definition 4.11. Let A be a domain and B a subring of A. We say that A is **integrally closed** in B if $C_B(A) = A$. We say that A is **integrally closed**, if it is integrally closed in its own field of fractions. **Remark 4.12.** Let A be an UFD. Then A is integrally closed.

Lemma 4.13. Let k be a subfield of a commutative ring with identity A and let $L = k[x_1, ..., x_n]$ be a subring of A generated by the elements $x_1, ..., x_n \in A$ over k. If L is a field, then L is a finite extension of k.

Lemma 4.14. Let k be algebraically closed, let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$ be a proper ideal. Then $\mathcal{Z}(\mathfrak{a}) \neq \emptyset$.

Lemma 4.15. Let k be algebraically closed, let $\mathfrak{a} = \langle f_1, ..., f_r \rangle \triangleleft k[x_1, ..., x_n]$. Then $\mathcal{Z}(\mathfrak{a}) = \emptyset$ if and only if there exist polynomials $h_1, ..., h_r \in k[x_1, ..., x_n]$ such that

 $f_1h_1 + \ldots + f_rh_r = 1.$

Lemma 4.16. Let k be algebraically closed, let $\mathfrak{a} \triangleleft k[x_1, ..., x_n]$ and let $f \in \mathcal{I}(\mathcal{Z}(\mathfrak{a}))$. Then $f \in rad(\mathfrak{a})$.