3 Affine algebraic sets.

3.1 Affine algebraic sets and their ideals.

Let k be any field.

Definition 3.1. A zero of a polynomial $f \in k[x_1, ..., x_n]$ in the affine space k^n is a point $(a_1, ..., a_n) \in k^n$ such that $f(a_1, ..., a_n) = 0$.

An affine algebraic set V is a subset of the affine space k^n consisting of all common zeros of some set of polynomials $S \subseteq k[x_1, ..., x_n]$:

$$V = \{ (a_1, ..., a_n) \in k^n | f(a_1, ..., a_n) = 0 \text{ for all } f \in \mathcal{S} \}.$$

We shall call the set V to be defined by the set of polynomials S and denote by $V = \mathcal{Z}(S)$.

Remark 3.2. Let $S \subseteq k[x_1, ..., x_n]$ and let \mathfrak{a} be the ideal of $k[x_1, ..., x_n]$ generated by S. Then $\mathcal{Z}(\mathcal{S}) = \mathcal{Z}(\mathfrak{a}).$

Remark 3.3. Let $S \subseteq k[x_1, ..., x_n]$. Then there exists a finite set $\{f_1, ..., f_r\} \subseteq k[x_1, ..., x_n]$ such that

```
\mathcal{Z}(\mathcal{S}) = \mathcal{Z}(f_1, ..., f_r).
```

Remark 3.4. Let $V \subseteq k^n$ be an affine algebraic set. The set $\mathcal{I}(V)$ of all polynomials whose common zeros coincide with V:

$$\mathcal{I}(V) = \{ f \in k[x_1, ..., x_n] | f(a_1, ..., a_n) = 0 \text{ for all } (a_1, ..., a_n) \in V \}$$

is an ideal of $k[x_1, ..., x_n]$.

Definition 3.5. Let $V \subseteq k^n$ be an affine algebraic set. The ideal $\mathcal{I}(V)$ consisting of polynomials whose common zeros constitute V shall be called the **ideal of the affine algebraic set** V.

Remark 3.6. Let $V, V_1, V_2 \subset k^n$ be affine algebraic sets in k^n , let $\mathfrak{a}, \mathfrak{a}_1, \mathfrak{a}_2$ be ideals of $k[x_1, ..., x_n]$. Then: 1. $\mathfrak{a}_1 \subseteq \mathfrak{a}_2 \Rightarrow \mathcal{Z}(\mathfrak{a}_1) \supseteq \mathcal{Z}(\mathfrak{a}_2)$, 2. $\mathcal{I}(\mathcal{Z}(\mathfrak{a})) \supseteq \mathfrak{a}$, 3. $\mathcal{Z}(\mathcal{I}(V)) = V$, 4. $V_1 \subseteq V_2 \Leftrightarrow \mathcal{I}(V_1) \supseteq \mathcal{I}(V_2)$, 5. $V_1 = V_2 \Leftrightarrow \mathcal{I}(V_1) = \mathcal{I}(V_2)$. **Lemma 3.7.** Let $f, g \in k[x_1, x_2]$ and assume that f is irreducible in $k[x_1, x_2]$ and that $f \nmid g$. Then the system of equations

 $f(x_1, x_2) = 0$ and $g(x_1, x_2) = 0$

has only a finite number of solutions in the field k.

Theorem 3.8. Let $f \in k[x_1, x_2]$ be an irreducible polynomial in $k[x_1, x_2]$. If the curve $\mathcal{Z}(f)$ contains infinitely many points, then

 $\mathcal{I}(\mathcal{Z}(f)) = \langle f \rangle.$

3.2 Zariski topology.

Lemma 3.9. A finite sum of affine algebraic sets is an affine algebraic set. To be more precise, let $\mathfrak{a}_1, ..., \mathfrak{a}_m$ be ideals of the ring $k[x_1, ..., x_n]$. Then

 $\mathcal{Z}(\mathfrak{a}_1) \cup \ldots \cup \mathcal{Z}(\mathfrak{a}_m) = \mathcal{Z}(\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m),$

where $a_1 \cdot ... \cdot a_m = \{ \sum_{i=1}^k a_{i1} a_{i2} ... a_{im} | k \in \mathbb{N}, a_{ij} \in a_j, j \in \{1, ..., m\}, i \in \{1, ..., k\} \}.$

Remark 3.10. Let $\mathfrak{a}_1, ..., \mathfrak{a}_m$ be ideals of the ring $k[x_1, ..., x_n]$. Then $\mathcal{Z}(\mathfrak{a}_1 \cdot \ldots \cdot \mathfrak{a}_m) = \mathcal{Z}(\mathfrak{a}_1 \cap \ldots \cap \mathfrak{a}_m).$

Lemma 3.11. Intersection of any number of affine algebraic sets if an affine algebraic set. To be more precise, let $\{a_i | i \in I\}$ be a family of ideals of the ring $k[x_1, ..., x_n]$. Then

$$\bigcap_{i \in I} \mathcal{Z}(\mathfrak{a}_i) = \mathcal{Z}\left(\left\langle \bigcup_{i \in I} \mathfrak{a}_i \right\rangle\right).$$

Remark 3.12. Let $a_1, ..., a_m$ be ideals of the ring $k[x_1, ..., x_n]$. Then $\mathcal{Z}(\mathfrak{a}_1+\ldots+\mathfrak{a}_m)=\mathcal{Z}(\langle\mathfrak{a}_1\cup\ldots\cup\mathfrak{a}_m\rangle).$

Theorem 3.13. In k^n there is a topology whose closed sets are affine algebraic sets in k^n .

Definition 3.14. The topology of k^n defined by affine algebraic sets is called the **Zariski** topology in k^n .

Remark 3.15. In every nonempty family of affine algebraic sets there exists a minimal affine algebraic set.

Remark 3.16. Every affine algebraic set $V \subseteq k^n$ is compact in the Zariski topology.

