2 Primary decomposition.

2.1 Primary decomposition.

Remark 2.1. Consider the ring \mathbb{Z} and an element $n \in \mathbb{Z}$. Then there exist uniquely determined prime numbers $p_1, ..., p_m$ and exponents $k_1, ..., k_m \in \mathbb{N}$ such that

$$n = \pm p_1^{k_1} \cdot \ldots \cdot p_m^{k_m}$$

or, equivalently:

$$(n) = (p_1^{k_1}) \cdot \ldots \cdot (p_m^{k_m}) = (p_1^{k_1}) \cap \ldots \cap (p_m^{k_m}).$$

Example 2.3.

- 1. Every prime ideal is primary.
- 2. An ideal in \mathbbm{Z} generated by a power of a prime number is primary.
- 3. Let *R* be a principal ideal domain. Then \mathfrak{q} is primary if and only if $\mathfrak{q} = \mathfrak{p}^n$, for a prime ideal \mathfrak{p} .

Lemma 2.4. Let R be a ring, let $q \triangleleft R$ be a proper ideal in R. The following conditions are equivalent:

i. q is primary,

ii. every zero divisor in R/\mathfrak{q} is nilpotent,

iii. the zero ideal in R/q is primary.

Example 2.5. The ideal $(x, y^2) \triangleleft k[x, y]$, where k is any field, is primary, but is not a power of a prime ideal.

Definition 2.6. Let R be a ring. An ideal $\mathfrak{n} \triangleleft R$, $0 \neq \mathfrak{n}$ is *irreducible* if, for all $\mathfrak{a}, \mathfrak{b} \triangleleft R$

 $\mathfrak{n} = \mathfrak{a} \cap \mathfrak{b} \Rightarrow \mathfrak{n} = \mathfrak{a} \vee \mathfrak{n} = \mathfrak{b}.$

Example 2.7.

- 1. Every maximal ideal is irreducible.
- 2. Every prime ideal is irreducible.
- 3. An ideal $\mathfrak{n} \triangleleft R$ is irreducible if and only if the zero ideal in R/\mathfrak{n} is irreducible.

Lemma 2.8. Let R be Noetherian. Every irreducible ideal in R is primary.

Example 2.9. The ideal $(4, 2x, x^2) \triangleleft \mathbb{Z}[x]$ is primary, but not irreducible.

Lemma 2.10. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of irreducible ideals.

Theorem 2.11. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of primary ideals.

2.2 Radical of an ideal.

Definition 2.12. Let R be a ring, let $\mathfrak{a} \triangleleft R$. The **radical** of the ideal \mathfrak{a} is defined to be

rad $\mathfrak{a} = \{ r \in R | \exists n \in \mathbb{N} r^n \in \mathfrak{a} \}.$

Remark 2.13. Let R be a ring, let $\mathfrak{a} \triangleleft R$. Then $\operatorname{rad} \mathfrak{a}$ is an ideal.

Remark 2.14. Let *R* be a ring, let $\mathfrak{a}, \mathfrak{b} \triangleleft R$.

- 1. $\mathfrak{a} \subseteq \operatorname{rad} \mathfrak{a}$,
- 2. $\mathfrak{a} \subseteq \mathfrak{b} \Rightarrow \operatorname{rad} \mathfrak{a} \subseteq \operatorname{rad} \mathfrak{b}$,
- **3**. rad (rad \mathfrak{a}) = rad \mathfrak{a} ,
- 4. rad $\mathfrak{a} \cdot \mathfrak{b} = \operatorname{rad} \mathfrak{a} \cap \mathfrak{b}$,
- 5. rad $\mathfrak{a} \cap \mathfrak{b} = \operatorname{rad} \mathfrak{a} \cap \operatorname{rad} \mathfrak{b}$,
- **6**. rad $\mathfrak{a} = (1) \Leftrightarrow \mathfrak{a} = (1)$,
- 7. rad $\mathfrak{a} + \mathfrak{b} = \operatorname{rad}(\operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b})$,
- 8. $\mathfrak{a} + \mathfrak{b} = (1) \Leftrightarrow \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b} = (1).$

Remark 2.15. Let R be a ring, let $\mathfrak{p} \triangleleft R$ be a prime ideal, let $m \in \mathbb{N}$. Then $\operatorname{rad} \mathfrak{p}^m = \mathfrak{p}$.

Remark 2.16. Let R be a ring, let $\mathfrak{a} \triangleleft R$. If rad \mathfrak{a} is a maximal ideal, then \mathfrak{a} is primary.

Lemma 2.17. Let R be a ring, let $q \triangleleft R$ be a primary ideal. Then rad q is prime.

Definition 2.18. Let R be a ring, let $q \triangleleft R$ be a primary ideal and let $\mathfrak{p} = \operatorname{rad} \mathfrak{q}$. Then \mathfrak{q} is called \mathfrak{p} -primary.

Remark 2.19. Let *R* be a ring, let $\mathfrak{m} \triangleleft R$ be a maximal ideal, let $m \in \mathbb{N}$. Then \mathfrak{m}^m is \mathfrak{m} -primary.

Lemma 2.20. Let R be a ring, let $q_1, ..., q_n$ be p-primary. Then $q_1 \cap ... \cap q_n$ is p-primary.

Definition 2.21. Let R be a ring, let $\mathfrak{a} \triangleleft R$ be a proper ideal and let

 $\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$

be a primary decomposition of \mathfrak{a} . If

 $\mathfrak{q}_j
ot \supseteq \bigcap_{i \neq j} \mathfrak{q}_i$

and

 $\operatorname{rad} \mathfrak{q}_i \neq \operatorname{rad} \mathfrak{q}_j \text{ for } i \neq j,$

then the primary decomposition $\mathfrak{a} = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ is called **minimal**.

Theorem 2.22. (Noether-Lasker) Let R be a Noetherian ring, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{q} has a minimal primary decomposition and the prime ideals $\mathfrak{p}_i = \operatorname{rad} \mathfrak{q}_i$ are uniquely determined up to the order.