6 Coordinate ring of an affine algebraic set.

- 1. Is the ring \mathbb{Z} isomorphic to a coordinate ring of an affine algebraic set?
- 2. Let $V = \mathcal{Z}(xy-1) \subseteq \mathbb{C}^2$. Show that $\mathbb{C}[V] \cong \mathbb{C}[x, \frac{1}{x}]$.
- 3. Show that coordinate rings of a circle and a hyperbola considered as affine algebraic sets in \mathbb{C}^2 are isomorphic.
- 4. Let $V = \mathcal{Z}(x^2 + y^2 z^2) \subseteq \mathbb{C}^3$. Find $\mathbb{C}[V]$.
- 5. Let $V = \mathcal{Z}(x^2 + y^2 z^2) \subseteq \mathbb{C}^3$, let $f = x^3 + 2xy^2 2xz^2 + x$ and $g = x x^3$. Show that $f_V = g_V$.
- 6. Let $V = \mathcal{Z}(y^2 x^3)$. Show that an element of k[V] can be written uniquely in the form p(x) + q(x)y with $p, q \in k[x]$.
- 7. Let $V = \{(t, t^2, t^3) | t \in k\}$. Show that V is an affine algebraic set and prove that $k[V] \cong k[x]$.

Homework: Problems 5, 6 and 7.