2 Primary decomposition.

- 1. Show that the ideal $(x^2, y^2) \triangleleft k[x, y]$, where k is any field, is not a product of prime ideals.
- 2. Show that in a domain the zero ideal is irreducible.
- 3. Show that the ideal $(4, 2x, x^2) \lhd \mathbb{Z}[x]$ is primary, but not irreducible.
- 4. Show that the ideal $\mathfrak{q} = (4, x) \triangleleft \mathbb{Z}[x]$ is primary, but is not a power of a prime ideal.
- 5. Let $\mathfrak{q} \lhd R$ be a primary ideal. Show that rad \mathfrak{q} is the smallest prime ideal of R containing the ideal \mathfrak{q} .
- 6. Let $R = \{a_0 + a_1x + \ldots + a_nx^n \in \mathbb{Z}[x] | a_1 \equiv 0 \pmod{3}\}.$
 - a) Show that in the ring R the ideal $\mathfrak{p}=(3x,x^2,x^3)$ is prime.
 - b) Show that the ideal \mathfrak{p}^2 is not primary.
- 7. Let $\mathfrak{q} = (2, x)^2 \lhd \mathbb{Z}[x]$.
 - a) Show q is primary.
 - b) Show that $\mathfrak{q} = (4, x) \cap (2, x^2)$.

Homework: Problems 5, 6 and 7.