1 Noetherian rings.

- 1. Show that if I is a nonzero ideal in a principal ideal domain R, then R/I is Noetherian.
- 2. Let S be a multiplicative subset of a commutative Noetherian ring with identity. Show that the ring $S^{-1}R$ is Noetherian.
- 3. Show that a ring R is Noetherian if and only if the ring $Mat_n R$ is Noetherian for every $n \ge 1$.
- 4. Let R be a Noetherian ring and let $\varphi \colon R \to R$ be an epimorphism. Show that φ is an isomorphism.
- 5. Let R be a Noetherian ring, let $\mathfrak{a} \triangleleft R$. The **radical** of the ideal \mathfrak{a} is defined to be

rad
$$\mathfrak{a} = \{ r \in R | \exists n \in \mathbb{N} r^n \in \mathfrak{a} \}.$$

Show that there is an integer $m \in \mathbb{N}$ such that $(\operatorname{rad} \mathfrak{a})^m \subseteq \mathfrak{a}$.

6. Let R be a Noetherian ring. The **nilradical** of R is defined to be

$$\operatorname{Nil} R = \{ r \in R | \exists n \in \mathbb{N} r^n = 0 \}.$$

Show that there is an integer $m \in \mathbb{N}$ such that $(\operatorname{Nil} R)^m = (0)$.

7. Let R be a Noetherian ring, let $\mathfrak{p} \triangleleft R$ be a prime ideal. An ideal $\mathfrak{q} \triangleleft R$ is called **p-primary** if $\mathfrak{p} = \operatorname{rad} \mathfrak{q}$ and for all $r, s \in R$

$$rs \in \mathfrak{q} \land s \notin \mathfrak{q} \Rightarrow \exists n \in \mathbb{N} r^n \in \mathfrak{q}.$$

Show that if \mathfrak{q} is \mathfrak{p} -primary, then there is an integer $m \in \mathbb{N}$ such that $\mathfrak{p}^m \subseteq \mathfrak{q} \subseteq \mathfrak{p}$.

Homework: Problems 5, 6 and 7.