
8 Rational functions field of an affine algebraic variety.

Definition 8.1. Let V ⊆ kn be an affine algebraic variety. The field of fractions of the coordinate
ring k[V ] will be called the field of rational functions of V and denoted by k(V ), and its elements
rational functions on V.

Example 8.2. Consider the following easy examples:

• V = {(a1, ..., an)}∈ kn, k(V ) =∼ k;

• V = kk, k(V )=∼ k(x1, ..., xn).

Definition 8.3. Let V ⊆kn be an affine algebraic variety. A rational function ϕ∈k(V ) is defined
at a point (a1, ..., an)∈V if ϕ= f

g
, for some f =F +I(V ), g=G+I(V )∈k[V ], F ,G∈k[x1, ..., xn],

with G(a1, ..., an)=/ 0. In this case we say that F (a1, ..., an)

G(a1, ..., an)
∈ k is the value of ϕ at (a1, ..., an), and

denote it by ϕ(a1, ..., an).

Remark 8.4. Let V ⊆kn be an affine algebraic variety, let ϕ∈k(V ) be defined at (a1, ..., an)∈V .
The value of ϕ at (a1, ..., an) is uniquely defined.

Proof. Let ϕ= f1
g1
= f2

g2
, f1=F1+I(V ), f2=F2+I(V ), g1=G1+I(V ), g2=G2+I(V )∈ k[V ], F1,

F2, G1, G2 ∈ k[x1, ..., xn], with G1(a1, ..., an) =/ 0 and G2(a1, ..., an) =/ 0 be two presentations of ϕ
as a quotient of elements of the coordinate ring of V . Then f1g2= f2g1 in the ring k[V ], so that
F1(a1, ..., an)G2(a1, ..., an)=F2(a1, ..., an)G1(a1, ..., an) and thus

F1(a1, ..., an)
G1(a1, ..., an)

=
F2(a1, ..., an)
G2(a1, ..., an)

. !

Example 8.5. Let V = Z(x2 + y2 − 1) ⊆ C2. Then C(V ) =∼ C(x, y) with x2 + y2 = 1. Let
ϕ= 1− y

x
∈C(V ). Then ϕ is defined at (0, 1)∈V and ϕ(0, 1)= 0, but ϕ is not defined at (0,−1).

Proof. Since x2=1− y2 in the ring C[V ], we get

ϕ=
1− y
x

=
(1− y)
x

·(1+ y)
(1+ y)

=
1− y2

x(1+ y)
=

x2

x(1+ y)
=

x
1+ y

and (1 + y)(0, 1) = 1 =/ 0, we see that ϕ is defined at (0, 1) and ϕ(0, 1) = 0. On the other hand,
suppose that ϕ is defined at (0,−1), that is

ϕ=
1− y
x

=
f
g

for some f = F + I(V ), g=G+ I(V ) ∈C[V ] with G(0,−1) =/ 0. Then (1− y)G(x, y) = xF (x, y)
in C[V ]. But this implies 1·G(0, −1) = 0·F (0, −1) = 0, so that G(0, −1) = 0 rendering such a
presentation impossible. !

Remark 8.6. Let V ⊆ kn be an affine algebraic variety. Every rational function f

g
∈ k(V ),

f = F + I(V ), g = G + I(V ) ∈ k[V ], F , G ∈ k[x1, ..., xn] determines a function defined on some
nonempty open subset U ⊆V with values in k that we shall also call a rational function.
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Proof. Indeed, the set

U = {(a1, ..., an)∈V |G(a1, ..., an)=/ 0}
= V \ {(a1, ..., an)∈V |G(a1, ..., an) =0}
= V \ (V ∩Z(G))

is open in the Zariski topology on V induced from kn. To see that it is nonempty, suppose that
G(a1, ..., an) = 0 for all (a1, ..., an) ∈ V . But then G ∈ I(V ), that is g = 0 as an element of the
coordinate ring k[V ], and thus g cannot be a denominator of a quotient in the field of fractions of
k[V ]. !

Remark 8.7. Let V ⊆ kn be an affine algebraic variety. If the rational functions ϕ1, ϕ2 ∈ k(V )
have the same values on a certain nonempty open subset of U ⊆V , then they are equal.

Proof. Say ϕ1 =
f1
g1

and ϕ2 =
f2
g2

with f1 = F1 + I(V ), f2 = F2 + I(V ), g1 = G1 + I(V ),
g2=G2+ I(V )∈ k[V ]. If ϕ1= ϕ2 on an open subset U ⊆V , then

F1
G1
− F2
G2

=
F1G2−F2G1

G1G2
=0

on U , that is F1G2−F2G1=0 on U as a restriction of a polynomial function kn→k to V . Clearly
F1G2−F2G1 is a continuous function in the Zariski topology, and by Remark 4.5 the set U is dense
in V , so that F1G2−F2G1=0 on V leading to ϕ1= ϕ2 on V . !

Theorem 8.8. Let V ⊆kn be an affine algebraic variety over an algebraically closed field k. If the
rational function ϕ∈ k(V ) is defined at every point of V, then ϕ∈ k[V ].

Proof. Since ϕ is defined at every point of V , then for each such point a ∈ V there exist
fa = Fa + I(V ), ga = Ga + I(V ) ∈ k[V ] such that ϕ = fa

ga
with Ga(a) =/ 0. Let a = ({Ga|

a ∈ V }) " k[x1, ..., xn]. Since k[x1, ..., xn] is Noetherian, there exists a finite number of points
a1, ..., am ∈ V such that a = (Ga1, ..., Gam). The polynomials Ga1, ..., Gam have no common
zero on V , for if Ga1(a) = ... = Gam(a) = 0 for some a ∈ V , then Ga(a) =/ 0 and, as Ga ∈ a,
Ga(a) =P1(a)Ga1(a) + ...+Pm(a)Gam(a), for some P1, ..., Pm∈ k[x1, ..., xn], so that Ga(a) = 0 – a
contradiction. Therefore Z(a+I(V ))= ∅, and by Lemma 4.16 there exist H1, ...,Hm∈k[x1, ..., xn]
and Q∈I(V ) such that the following equation holds true in the ring k[x1, ..., xn]:

H1Ga1+ ...+HmGam+Q=1.

But this leads to

(H1+ I(V ))(Ga1+ I(V )) + ...+(Hm+I(V ))(Gam+I(V ))+ (Q+ I(V )) =
= (H1+ I(V ))(Ga1+I(V ))+ ...+(Hm+ I(V ))(Gam+ I(V ))
= 1+ I(V )

holding true in k[V ] and, consequently, k(V ). Multiplying both sides by ϕ and using the fact that
ϕ=

fai
gai

, i∈ {1, ...,m}, yields:

(H1+ I(V ))fa1+ ...+(Hm+ I(V ))fam= ϕ,

that is ϕ∈ k[V ]. !
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Definition 8.9. Let V ⊆ kn be an affine algebraic set, let V =V1∪ ...∪Vm be the decomposition of
V into affine algebraic varieties. The k-algebra of rational functions of V is defined to be

k(V )= k(V1)⊕ ...⊕ k(Vm)

and its elements are called rational functions on V.

Definition 8.10. Let V ⊆kn be an affine algebraic set. If a rational function ϕ∈k(V ) is defined at
every point of an open subset U ⊆V, then the restriction ϕ #Uwil be called a regular function on U.

Example 8.11. Let V =Z(xy). Then V =Z(x)∪Z(y). Let f =x(y+1). Then f #Z(x)\{(0,0)}=0
and f #Z(y)\{(0,0)}=1, f ∈ k(V ), f is regular on both Z(x) and Z(y), but not regular on V , as it
is not defined on (0, 0).

Remark 8.12. Let V ⊆ kn be an affine algebraic set, let f ∈ k(V ). Then f is continuous on the
set of points where it is defined.

Proof. It suffices to check that counterimages of closed sets are closed, which follows directly from
the definition of Zariski topology. !

Theorem 8.13. Let V ⊆ kn be an affine algebraic variety, let f = F + I(V ) ∈ k[V ] \ {0},
F ∈ k[x1, ..., xn], let

k[V ]f =

{
ϕ∈ k(V )| ϕ= h

f
,m∈Z, h∈ k[V ]

}

and

Vf = {(a1, ..., an)∈V |F (a1, ..., an)=/ 0}.

Then the k-algebra of regular functions on Vf is isomorphic to k[V ]f.

Proof. That every rational function from k[V ]f is defined at every point of Vf and thus yields a
regular function there – is clear.

Conversely, consider a rational function ϕ∈k(V ) regular on Vf. Following the proof of Theorem 8.8,
for every a∈Vf there exist ha=Ha+I(V ), fa=Fa+I(V )∈k[V ] such that ϕ= ha

fa
with Fa(a)=/ 0.

Let a=({Fa| a∈Vf})"k[x1, ..., xn]. Then a=(Fa1, ..., Fam), for some points a1, ..., am∈Vf, and the
polynomials Fa1, ..., Fam have no common zeros on Vf i.e. conceivable common zeros of Fa1, ..., Fam
are among zeros of F . Thus Z(a)⊆Z(F ), hence a⊇ (F ) and there exist G1, ..., Gm∈ k[x1, ..., xn]
such that

G1Fa1+ ...+GmFam=F

yielding

(G1+ I(V ))fa1+ ...+(Gm+I(V ))fam= f ,

which, after multiplying by ϕ and using ϕ= ha
fa
, a∈Vf, gives

(G1+ I(V ))ha1+ ...+(Gm+ I(V ))ham= fϕ,

or, denoting by h=(G1+ I(V ))ha1+ ...+(Gm+ I(V ))ham∈ k[V ]:

h= fϕ,

or, equivalently, ϕ= h

f
. !
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