7 Morphisms of affine algebraic sets. Category of affine algebraic sets. Isomorphisms of affine algebraic sets.

7.1 Morphisms of affine algebraic sets.

Definition 7.1. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets. A morphism $f: V \to W$ is a map such that there exist $f_1, ..., f_m \in k[V]$ such that $f(a) = (f_1(a), ..., f_m(a))$, for all $a \in V$.

Remark 7.2. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets, let $f_1, ..., f_m \in k[V]$. Then $f = (f_1, ..., f_m): V \to W$ is a morphism if and only if

$$g(f_1, ..., f_m) = 0 \in k[V]$$
 for all $g \in \mathcal{I}(W)$.

Proof. Indeed, one easily checks that

$$\begin{aligned} (f_1(a_1,...,a_n),...,f_m(a_1,...,a_n)) &\in W \iff g(f_1(a_1,...,a_n),...,f_m(a_1,...,a_n)) = 0 \text{ for all } g \in \mathcal{I}(W) \\ \Leftrightarrow g(f_1,...,f_m)(a_1,...,a_n) = 0 \text{ for all } g \in \mathcal{I}(W) \\ \Leftrightarrow g(f_1,...,f_m) \in \mathcal{I}(V) \text{ for all } g \in \mathcal{I}(W) \\ \Leftrightarrow g(f_1,...,f_m) = 0 \in k[V] \text{ for all } g \in \mathcal{I}(W). \end{aligned}$$

Example 7.3. Consider the following easy examples.

- Let $f \in k[V]$. Then $f: V \to k$ is a morphism.
- Let $f: k^n \to k^m$ be a linear map. Then f is a morphism.
- Let $f: \mathcal{Z}(xy-1) \to k$ be given by f(x, y) = x. Then f is a morphism.
- Let $f: k \to \mathcal{Z}(y^2 x^3)$ be given by $f(t) = (t^2, t^3)$. Then f is a morphism.

7.2 Category of affine algebraic sets.

Definition 7.4. A category C consists of a class of objects Ob(C), denoted by A, B, C, ... and a class of morphisms (or arrows) Ar(C) together with:

- 1. classes of pairwise disjoint arrows $\operatorname{Hom}(A, B)$, one for each pair of objects $A, B \in \operatorname{Ob}(\mathcal{C})$; and elements f of the class $\operatorname{Hom}(A, B)$ shall be called a **morphism** from A to B and denoted by $A \xrightarrow{f} B$ or $f: A \to B$,
- functions Hom(B,C)×Hom(A,B)→Hom(A,C), for each triple of objects A, B, C∈Ob(C), called composition of morphisms; for morphisms A → B and B → C values of this function shall be denoted by (g, f) → g ∘ f, and the morphism A → C shall be called the composition of morphisms A → B and B → C.

Moreover, we require that the following two axioms hold true:

Associativity. If $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ and $C \xrightarrow{h} D$ are morphisms in C, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Identity. For every object $B \in Ob(\mathcal{C})$ there exists a morphism $B \xrightarrow{1_B} B$ such that for all morphisms $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$

$$1_B \circ f = f$$
 and $g \circ 1_B = g$.

If the classes Ob(C) and Ar(C) are sets, we shall call the category C small. If all classes Hom(A, B) are sets, we shall call the category C locally small.

Example 7.5.

- 1. We shall set the notation for a number of familiar categories here:
 - Set is the category of sets with functions as morphisms;
 - *G*rp is the category of groups with group homomorphisms as morphisms;
 - \mathcal{T} op is the category of topological spaces with continuous functions as morphisms.
 - *Ab* is the category of Abelian groups;
 - Rng is the category of rigns;
 - *F*ield is the category of fields;
 - $k \mathcal{V}$ ect is the category of k -vector spaces.

All these categories are locally small, but not small.

2. The notion of a category allows for a different take on familiar constructions in mathematics. For example, consider a partial order (P, \leq) . One checks that considering the elements of P as objects, and defining morphisms by

 $a \mathop{\rightarrow} b \qquad \Leftrightarrow \qquad a \mathop{\leqslant} b$

one obains a category, which is small provided P is a set.

3. Affine algebraic sets with morphisms defined in the previous section for a category.

7.3 Isomorphisms of affine algebraic sets.

Definition 7.6. Let $V \subseteq k^n$ and $W \subseteq k^m$ be affine algebraic sets. A morphism $f: V \to W$ shall be called an **isomorphism** is there exists a morphism $g: W \to V$ such that

$$f \circ g = \operatorname{id}_W$$
 and $g \circ f = \operatorname{id}_V$.

If there exists an isomorphism $f: V \to W$, we shall call the sets V and W isomorphic and denote $V \cong W$.

Example 7.7. One easily checks that:

- $\mathcal{Z}(y-x^k) \cong k$ via f(x, y) = x and $g(t) = (t, t^k);$
- $f: \mathcal{Z}(xy-1) \to k$ given by f(x, y) = x is not an isomorphism;
- $f: k \to \mathcal{Z}(y^2 x^3)$ given by $f(t) = (t^2, t^3)$ is not an isomorphism, even though it is a bijection.