
4 Affine algebraic varietes. Hilbert Nullstellensatz.

4.1 Affine algebraic varietes.

Definition 4.1. A nonempty affine algebraic set V ⊆kn will be called an affine algebraic variety
if the ideal I(V ) of the ring k[x1, ..., xn] is prime.

Definition 4.2. A nonempty affine algebraic set V ⊆ kn will be called irreducible, if for affine
algebraic sets A,B ⊆ kn:

V =A∪B⇒ V =A∨V =B.

Theorem 4.3. A nonempty affine algebraic set V ⊆ kn is irreducible if and only if it is an affine
algebraic variety.

Proof. Assume that an affine algebraic set V ⊆ kn is not irreducible. Then V =A∪B, for some
affine algebraic sets A,B⊆kn, with V =/ A and V =/ B. Since V ⊇A, we see that I(V )⊆I(A). Also,
since V =/ A, by Remark 3.6.5 I(V ) =/ I(A). Thus there exists f ∈ I(A) with f ∈/ I(V ). Likewise,
there exists g ∈ I(B) with g ∈/ I(V ). But fg ∈ I(V ), as for a∈ V either a ∈A and then f(a) = 0,
or a∈B and then g(a)= 0 – consequently, fg(a)= 0. Therefore the ideal I(V ) is not prime.

Conversely, suppose that V is irreducible and the ideal I(V ) is not prime. Let f , g ∈ k[x1, ..., xn]
be such that fg ∈ I(V ) and f ∈/ I(V ), g ∈/ I(V ). Then

A=Z(f)∩V and B=Z(g)∩V

are both algebraic sets. We shall show that

V =A∪B and V =/ A, V =/ B.

Indeed, if a∈V then, as fg ∈I(V ), fg(a)= f(a)g(a)=0, so that either f(a)=0 or g(a)=0, and,
consequently, a∈A or a∈B. Hence V ⊆A∪B, and as V ⊇A and V ⊇B, this yields V =A∪B.

Moreover, suppose that V =A. Then I(V )= I(A), but f ∈ I(A) with f ∈/ I(V ). Thus V =/ A and
similarly V =/ B. !

Theorem 4.4. Every affine algebraic set V is a finite sum of affine algebraic varieties:

V =V1∪ ...∪Vr, r≥ 1.

If in the above decomposition the varieties Vi are incomparable (that is Vi⊂/ Vj for i=/ j), then they
are uniquely defined.

Proof. We shall prove the existence of such a decomposition first. Let

R= {V ⊆ kn|V is algebraic and not a sum of affine algebraic varieties}.

Suppose R=/ ∅. By Remark 3.15 there is a minimal element in R, say Z, which is thus not a sum
of affine algebraic varieties. It is not a variety itself then, and hence is not irreducible. Hence

Z=A∪B and Z =/ A,Z =/ B,

for some affine algebraic sets A,B ⊆ kn. By the minimality of Z, A,B ∈/R, so that both A and B
are sums of affine algebraic varieties. But then so is Z – a contradiction.
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For the proof of uniqueness, suppose that

V =V1∪ ...∪Vr=W1∪ ...∪Ws,

where V1, ..., Vr,W1, ...,Ws⊆kn are incomparable affine algebraic varieties. For a fixed i∈{1, ..., r}:

Vi=V ∩Vi=(W1∪ ...∪Ws)∩Vi=(W1∩Vi)∪ ...∪ (Ws∩Vi),

and since Vi is a variety, hence an irreducible set, Vi =Wki ∩ Vi, for some ki ∈ {1, ..., s} and, in
particular, Vi⊆Wki. Likewise, for every j ∈ {1, ..., s} there exists lj ∈ {1, ..., r} such that Wj ⊆Vlj.
Consequently, as Vi’s and Wj’s are incomparable, Vi ⊆ Wki ⊆ Vlki leads to i = lki and Vi = Wki.
Therefore every Vi is equal to some of the Wj’s and r" s. Likewise, every Wj is equal to some of
the Vi’s and s" r. This together means that r= s and V1, ..., Vr differ from W1, ..., Ws at most by
the order of appearance. !

Remark 4.5. Let V ⊆kn be an affine algebraic variety endowed with the Zariski topology inherited
from kn. Then in V every two nonempty open sets have a nonempty intersection.

Proof. Let U1,U2⊆V be two open sets. Thus U1=V \V1 and U2=V \V2, for some affine algebraic
sets V1, V2⊆ kn. But then

V =V1∪V2∪ [(V \V1)∩ (V \V2)] =V1∪V2∪ (U1∩U2).

If U1∩U2= ∅, then V =V1 or V =V2, as V is a variety and hence an irreducible set. But since U1,
U2=/ ∅, this is impossible. !

Remark 4.6. Let Spec k[x1, ..., xn] denote the prime spectrum of the ring k[x1, ..., xn], that is
the set of all prime ideals. Let Varkn denote the set of all affine algebraic varieties in kn. The map

I:Var kn→Spec k[x1, ..., xn], V ,→ I(V )

is

1. injective,

2. surjective if and only if for every prime ideal p of the ring k[x1, ..., xn]

p=I(Z(p)).

Proof. The map I is injective by Remark 3.6.5. Assume that the map I is surjective, that
is for every p ∈ Spec k[x1, ..., xn], p = I(V ), for some affine algebraic variety V ⊆ kn. But then
Z(p) =Z(I(V ))=V , so that p=I(Z(p)).

Conversely, assume that p= I(Z(p)) for all p∈ Spec k[x1, ..., xn]. But then Z(p) is a variety, and
the ideal p is its image via the map I. !

4.2 Hilbert Nullstellensatz.

Remark 4.7. Let a# k[x1, ..., xn]. Then

a⊆ rad(a)⊆I(Z(a)).

Proof. Fix f ∈ rad (a). Then fm∈ a, for some m∈N. In particular, fm(a) = 0, for all a ∈Z(a),
but then also f(a)= 0, for all a∈Z(a). Thus f ∈ I(Z(a)). !
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Theorem 4.8. (Hilbert Nullstellensatz) Let k be algebraically closed, let a#k[x1, ...,xn]. Then
rad(a)= I(Z(a)).

The proof follows from a series of lemmas which we shall prove now. We will also need some basic
definitions and facts from the theory of extensions of rings.

Definition 4.9. Let B be a domain and let A be a subring of B. An element x ∈ B is integral
over A if there exist a1, ..., an∈A such that

a1+ a2x+ ...+ anxn−1+xn=0;

The set of all elements of B integral over A will be denoted by CB(A) and called the integral
closure of A in B.

Proposition 4.10. Let B be a domain and let A be a subring of B. Then the integral closure
CB(A) of A in B forms a ring.

We shall give a somewhat old-fashioned proof here that utilizes the notions of symmetric poly-
nomials4.1, elementary symmetric polynomials4.2, and the fundamental theorem on symmetric
polynomials.4.3

Proof. Let f = a1 + a2x+ ... + anxn−1 + xn ∈ A[x] and let α1, ..., αn be the roots of f in some
larger ring. By the Viete’s formulas

an=−S1(α1, ...,αn), an−1=S2(α1, ...,αn), ..., a1=±Sn(α1, ...,αn),

that is the elementary symmetric polynomials in roots of f lie in A. Consequently, by the funda-
mental theorem on symmetric polynomials, every symetric polynomial with coefficients from A in
the roots of f lies in A. Moreover, every polynomial g(α1, ...,αn) with coefficients from A in the
roots of f is a root of a monic polynomial in A[x]: indeed, the polynomial

h(x)=
∏

σ∈S(n)
(x− g(ασ(1), ...,ασ(n)))

is a monic polynomial whose coefficients are symmetric polynomials in the αi’s, and therefore lie
in A. But g(α1, ...,αn) is one of the roots of h.

Now if α1 and α2 are two elements of B integral over A, then there exists a monic polynomial
with coefficients in A having both α1 and α2 as roots. Take g(α1, α2, ...) = α1 ± α2 and then
g(α1,α2, ...) =α1·α2 to deduce that these elements are also integral over A. !

4.1. A polynomial P (x1, ..., xn)∈A[x1, ..., xn] is symmetric if for every permutation σ ∈S(n):

P (x1, ..., xn) =P (xσ(1), ..., xσ(n)).

4.2. The elementary symmetric polynomials are defined as follows:

S1(x1, ..., xn) = x1+ ...+xn,

S2(x1, ..., xn) = x1x2+ ...+x1xn+x2x3+ ...+xn−1xn,
···

Sk(x1, ..., xn) =
∑

i1<i2<...<ik

xi1·...·xik,

···
Sn(x1, ..., xn) = x1·...·xn.

4.3. Theorem (Fundamental Theorem on Symmetric Polynomials): Every symmetric polynomial P (x1, ...,
xn) ∈ A[x1, ..., xn] is equal to a polynomial in the elementary symmetric polynomials with coefficients in A, i.e.
P ∈A[S1, ..., Sn].
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Definition 4.11. Let A be a domain and B a subring of A. We say that A is integrally closed
in B if CB(A) =A. We say that A is integrally closed, if it is integrally closed in its own field
of fractions.

Remark 4.12. Let A be an UFD. Then A is integrally closed.

Proof. Let k be the field of fractions of A. If x∈Ck(A), then x is a root of a monic polynomial f
with coefficients from A. If x= a

b
with gcd (a, b)= 1, a, b∈A, then a is a divisor of the least, and

b of the highest coefficient of f , so that, in particular, b=±1 and x=±a∈A. !

Lemma 4.13. Let k be a subfield of a commutative ring with identity A and let L= k[x1, ..., xn]
be a subring of A generated by the elements x1, ..., xn∈A over k. If L is a field, then L is a finite
extension of k.

Proof. We shall proceed by induction on n. For n=1, assume that K= k[x1] is a field. We may
also assume that x1=/ 0, and thus 1

x1
∈L. By the definition of L, there exists a polynomial g ∈k[x]

such that g(x1)=
1

x1
. Therefore x1g(x1)− 1=0 which means that the element x1 is algebraic over

k. Thus L= k[x1] is a finite extension of k.

For n> 1 assume that L= k[x1, ..., xn] is a field. Thus L contains the subfield k(x1) and hence

L= k(x1)[x2, ..., xn].

By the inductive hypothesis the elements x2, ..., xn are algebraic over k(x1) and it suffices to show
that x1 is algebraic over k.

Suppose then that x1 is transcendental over k. The field k(x1) is the field of fractions of the ring
k[x1]. Since x2, ..., xn are algebraic over k(x1), there exist polynomials a2(x1), ..., an(x1)∈k[x1] such
that the elements a2(x1)x2, ..., an(x1)xn are integral over k[x1]. This follows from the following
elementary claim: if xi is a zero of a nonzero polynomial

f = c0+ c1x+ ...+ cm−1xm−1+ aixm

with coefficients from the ring k[x1], then aixi is a zero of the polynomial

c0ai
m−1+ c1ai

m−2x+ ...+ cm−1xm−1+xm.

Clearly all elements of k[x1] are integral over k[x1], so, by Proposition 4.10 the elements
a2(x1)a3(x1)·...·an(x1)xi, i ∈ {2, ..., n}, are integral over k[x1]. Let a(x1) = a2(x1)a3(x1)·...·an(x1).
Thus for every f(x1, ..., xn)∈ k[x1, ..., xn] there exists a sufficiently large s∈N such that

a(x1)sf(x1, ..., xn)= g(x1, a(x1)x2, ..., a(x1)xn),

for some polynomial g ∈ k[x1, ..., xn]. In particular, for every element α∈ k(x1), there exists s∈N
such that a(x1)sα is integral over k[x1]. But k[x1] is a PID, hence an UFD, and thus is integrally
closed. Therefore a(x1)sα∈ k[x1]. This is obviously false, as it means that every rational function
α∈ k(x1) is of the form

α=
h(x1)
a(x1)s

,

for some s ∈N and h(x1) ∈ k[x1] ( 1

1+ a(x1)
is clearly not of that form). This contradiction show

that x1 is, in fact, algebraic. !
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Lemma 4.14. Let k be algebraically closed, let a# k[x1, ..., xn] be a proper ideal. Then Z(a)=/ ∅.

Proof. Let (1)=/ a#k[x1, ..., xn]. Let m be a maximal ideal that contains a. Since a⊆m, it follows
that Z(a)⊇Z(m), so that it suffices to show that Z(m)=/ ∅ for every maximal idealm of k[x1, ...,xn].

Let m# k[x1, ..., xn] be any maximal ideal. Then L= k[x1, ..., xn]/m is a field. Moreover, L is a
homomorphic image of the ring k[x1, ..., xn] via the canonical epimorphism κ:k[x1, ..., xn]→k[x1, ...,
xn]/m=L. In particular, κ(k) is a subfield of L isomorphic to k – we shall thus identify elements
a∈ k with their images a+m∈L.

The generators x1, ..., xn of the ring k[x1, ..., xn] are mapped by κ onto the generators x1+m, ...,
xn+m of L. Since L is a field, by Lemma 4.13 L is a finite extension of k. But k is algebraically
closed, so that it does not have any proper finite extensions, and thus k=L. In particular x1+m, ...,
xn+m∈ k and it suffices to show that every f ∈m vanishes at (x1+m, ..., xn+m). Indeed:

f(x1+m, ..., xn+m)= f(κ(x1), ...,κ(xn)) =κ(f(x1, ..., xn))= f +m=m. !

Lemma 4.15. Let k be algebraically closed, let a= 〈f1, ..., fr〉#k[x1, ..., xn]. Then Z(a)=∅ if and
only if there exist polynomials h1, ..., hr ∈ k[x1, ..., xn] such that

f1h1+ ...+ frhr=1.

Proof. If the condition of Lemma 4.15 is satisfied, then a = (1) and thus Z(a) = ∅. If it is not
satisfied, then a=/ (1) and by Lemma 4.14 Z(a)=/ ∅. !

Lemma 4.16. Let k be algebraically closed, let a # k[x1, ..., xn] and let f ∈ I(Z(a)). Then
f ∈ rad(a).

Proof. The theorem is trivially satisfied when f = 0. Assume then f =/ 0 and let a= (f1, ..., fr).
Consider the ring of polynomials in n+1 variables k[x1, ..., xn, z] and its elements

f1, ..., fr, 1− z·f.

Let g=1− z·f . The polynomials f1, ..., fr, g have no common zero in kn+1, as every common zero
of f1, ..., fr in kn+1 is also a zero of f and thus g takes there the value 1. By Lemma 4.15 there
exist polynomials g1, ..., gr, h∈ k[x1, ..., xn, z] such that

f1g1+ ...+ frgr+(1− z·f)h=1.

We might as well consider this equality holds in the function field k(x1, ...,xn, z) and then substitute
1

f
for z. This yields

f1g1̂+ ...+ frgr̂=1,

where the gî’s have denominators equal to powers of f . Multiplying both sides by a sufficiently
large power of f we get

f1h1+ ...+ frhr= fm,

for some h1, ..., hr∈ k[x1, ..., xn]. !

The Nullstellensatz now follows from Lemma 4.16 and Remark 4.7.
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