4 Affine algebraic varietes. Hilbert Nullstellensatz.
4.1 Affine algebraic varietes.

Definition 4.1. A nonempty affine algebraic set V- C k™ will be called an affine algebraic variety
if the ideal Z(V') of the ring k[x1, ..., x,] is prime.

Definition 4.2. A nonempty affine algebraic set V- C k™ will be called irreducible, if for affine
algebraic sets A, B Ck":

V=AUB=V=AVV =8B.

Theorem 4.3. A nonempty affine algebraic set V.C k™ is irreducible if and only if it is an affine
algebraic variety.

Proof. Assume that an affine algebraic set V C k™ is not irreducible. Then V = AU B, for some
affine algebraic sets A, B C k™, with V # A and V # B. Since V D A, we see that Z(V) CZ(A). Also,
since V # A, by Remark 3.6.5 Z(V) #Z(A). Thus there exists f € Z(A) with f ¢ Z(V). Likewise,
there exists g € Z(B) with g ¢ Z(V'). But fgeZ(V), as for a € V either a € A and then f(a)=0,
or a € B and then g(a) =0 — consequently, fg(a)=0. Therefore the ideal Z(V') is not prime.

Conversely, suppose that V is irreducible and the ideal Z(V) is not prime. Let f, g € k[z1, ..., Tx]
be such that fgeZ(V) and f¢Z(V), g¢Z(V). Then

A=Z(f)NV and B=Z(g)NV
are both algebraic sets. We shall show that
V=AUB and V#AV#B.

Indeed, if a €V then, as fgeZ(V), fg(a) = f(a)g(a)=0, so that either f(a)=0 or g(a)=0, and,
consequently, a € A or a € B. Hence VCAUB, and as V O A and V D B, this yields V=AUB.

Moreover, suppose that V' =A. Then Z(V)=Z(A), but fe€Z(A) with f¢Z(V). Thus V # A and
similarly V # B. O

Theorem 4.4. FEvery affine algebraic set V is a finite sum of affine algebraic varieties:
V=Wnu..uV,., r>1.

If in the above decomposition the varieties V; are incomparable (that is V; ¢ V; for i+ j), then they
are uniquely defined.

Proof. We shall prove the existence of such a decomposition first. Let
R ={V Ck" Vis algebraic and not a sum of affine algebraic varieties}.

Suppose R # (). By Remark 3.15 there is a minimal element in R, say Z, which is thus not a sum
of affine algebraic varieties. It is not a variety itself then, and hence is not irreducible. Hence

Z=AUB and Z+#A,Z+B,

for some affine algebraic sets A, B C k™. By the minimality of Z, A, B¢ R, so that both A and B
are sums of affine algebraic varieties. But then so is Z — a contradiction.
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For the proof of uniqueness, suppose that
V=Viu.uV,.=WuU..UW;,,
where Vi, ..., V., WA, ..., Wy C k™ are incomparable affine algebraic varieties. For a fixed i € {1,...,7}:
Vi=vnV,=MWuU..uW)nV,=MWnNV)Uu..UW,NV),

and since Vj is a variety, hence an irreducible set, V; = Wi, N'V;, for some k; € {1, ..., s} and, in
particular, V; C Wy,. Likewise, for every j € {1,...,s} there exists [; € {1,...,r} such that W; CV},.
Consequently, as Vj’s and Wj’s are incomparable, V; € W, C ‘/lk-i leads to i = I, and V; = Wj,.
Therefore every V; is equal to some of the Wj’s and r < s. Likewise, every W; is equal to some of

the V;’s and s <r. This together means that r=s and V3, ..., V;. differ from W4, ..., Wy at most by
the order of appearance. O

Remark 4.5. Let V C k" be an affine algebraic variety endowed with the Zariski topology inherited
from k™. Then in V every two nonempty open sets have a nonempty intersection.

Proof. Let U;,U; CV be two open sets. Thus Uy =V \ V] and U=V \ V4, for some affine algebraic
sets V1, Vo C k™. But then

V=VUWKU[(V\V)N(V\)]=WKUVKhUUiN).

If UyNnU;=0, then V=1V; or V=V,, as V is a variety and hence an irreducible set. But since Uy,
Uz #+ 0, this is impossible. O

Remark 4.6. Let Spec k[z1, ..., T,] denote the prime spectrum of the ring k[z1, ..., z,], that is
the set of all prime ideals. Let Var k™ denote the set of all affine algebraic varieties in £”. The map

Z:Var k" — Speck[z1,...,xn], V—I(V)
is
1. injective,

2. surjective if and only if for every prime ideal p of the ring k[z1, ..., 4]
p=Z(Z(p))-

Proof. The map Z is injective by Remark 3.6.5. Assume that the map 7 is surjective, that
is for every p € Spec k[x1, ..., x|, p = Z(V), for some affine algebraic variety V' C k™. But then
Z(p)=Z(Z(V))=V, so that p=Z(Z(p)).

Conversely, assume that p=Z(Z(p)) for all p € Spec k[z1, ..., z,]. But then Z(p) is a variety, and
the ideal p is its image via the map Z. U

4.2 Hilbert Nullstellensatz.

Remark 4.7. Let a <k[z1,...,z,]. Then

aCrad(a) CZ(Z(a)).

Proof. Fix f erad(a). Then f™ € a, for some m € N. In particular, f™(a)=0, for all a € Z(a),
but then also f(a)=0, for all a € Z(a). Thus f €Z(Z(a)). d
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Theorem 4.8. (Hilbert Nullstellensatz) Let k be algebraically closed, let a < k[z1,...,x,). Then
rad(a) =Z(Z(a)).

The proof follows from a series of lemmas which we shall prove now. We will also need some basic
definitions and facts from the theory of extensions of rings.

Definition 4.9. Let B be a domain and let A be a subring of B. An element x € B is integral
over A if there exist ay, ..., an € A such that

a1+ asx + ...+an:c”_1+:c":0;

The set of all elements of B integral over A will be denoted by Cp(A) and called the integral
closure of A in B.

Proposition 4.10. Let B be a domain and let A be a subring of B. Then the integral closure
CB(A) of A in B forms a ring.

We shall give a somewhat old-fashioned proof here that utilizes the notions of symmetric poly-
nomials*!, elementary symmetric polynomials*?, and the fundamental theorem on symmetric
polynomials.*3

Proof. Let f=a1+ aox + ... + a,2" "1 + 2" € Afz] and let aq, ..., a,, be the roots of f in some
larger ring. By the Viete’s formulas

an=—51(a1, ... n), an—1=5S2(a1, ..., Qn), ..., a1 = £Sp(aq, ..., a),

that is the elementary symmetric polynomials in roots of f lie in A. Consequently, by the funda-
mental theorem on symmetric polynomials, every symetric polynomial with coefficients from A in
the roots of f lies in A. Moreover, every polynomial g(aq, ..., ;) with coefficients from A in the
roots of f is a root of a monic polynomial in A[z]: indeed, the polynomial

h(z)= H (xfg(a,r(l),...,a(,(n)))

oceS(n)

is a monic polynomial whose coefficients are symmetric polynomials in the «;’s, and therefore lie
in A. But g(ay, ..., a,) is one of the roots of h.

Now if a; and as are two elements of B integral over A, then there exists a monic polynomial
with coefficients in A having both «; and ag as roots. Take g(ay, asg, ...) = a1 £ a2 and then
g(a1, ag,...) =ag-as to deduce that these elements are also integral over A. ]

4.1. A polynomial P(z1,...,zy) € A[z1, ..., ] is symmetric if for every permutation o € S(n):

P21,y %n) = P(To(1)s ) To(n))-
4.2. The elementary symmetric polynomials are defined as follows:

Sl($17 ~-':xn) = T1+..+2n,

Sa(z1, ..., xn) = 12+ ... +T1Tp +T2x3+ ... + T —1Tp,
Sk(x1, .y Tn) = Z Ty Ty,
I <in< .. iy
Sn(z1,...,Tn) = TiTp.
4.3. Theorem (Fundamental Theorem on Symmetric Polynomials): Every symmetric polynomial P(z1, ...,
Zpn) € Alz1, ..., Ty] is equal to a polynomial in the elementary symmetric polynomials with coefficients in A, i.e.
PeA[Sy, ..., 5]
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Definition 4.11. Let A be a domain and B a subring of A. We say that A is integrally closed
in B if Cp(A)=A. We say that A is integrally closed, if it is integrally closed in its own field
of fractions.

Remark 4.12. Let A be an UFD. Then A is integrally closed.

Proof. Let k be the field of fractions of A. If z € Cj(A), then z is a root of a monic polynomial f
with coefficients from A. If z :% with ged (a,b) =1, a,b€ A, then a is a divisor of the least, and
b of the highest coefficient of f, so that, in particular, b= 41 and = = +a € A. O

Lemma 4.13. Let k be a subfield of a commutative ring with identity A and let L =k[x1, ..., T,
be a subring of A generated by the elements x1,...,x, € A over k. If L is a field, then L is a finite
extension of k.

Proof. We shall proceed by induction on n. For n=1, assume that K = k[z4] is a field. We may
also assume that =1 # 0, and thus xil € L. By the definition of L, there exists a polynomial g € k[z]

such that g(z1) = Zil Therefore x1g(z1) — 1 =0 which means that the element z; is algebraic over
k. Thus L =k[z1] is a finite extension of k.

For n>1 assume that L =Fk[z1,...,2,] is a field. Thus L contains the subfield k(1) and hence
L=Fk(x1)[z2, ..., n)].

By the inductive hypothesis the elements zs, ..., x,, are algebraic over k(z1) and it suffices to show
that x is algebraic over k.

Suppose then that z; is transcendental over k. The field k(x1) is the field of fractions of the ring
k[x1]. Since xa, ..., 2, are algebraic over k(x1), there exist polynomials az(z1), ..., an(x1) € k[x1] such
that the elements as(w1)z2, ..., an(r1)T, are integral over k[z1]. This follows from the following
elementary claim: if z; is a zero of a nonzero polynomial

f=co+eciz+...+cmo1z™ T +ax™
with coefficients from the ring k[x1], then a;x; is a zero of the polynomial

coa™ P a4 Ao ™,

Clearly all elements of k[zi] are integral over k[zi], so, by Proposition 4.10 the elements
az(z1)as(x1)-....an(z1)xs, 0 € {2, ...,n}, are integral over k[x1]. Let a(x1) = az(z1)az(x1) ...-an(x1).
Thus for every f(x1,...,2n) € k21, ..., T,) there exists a sufficiently large s € N such that

a(x1)*f(xq, ..., xn) = g(x1, a(1) X2, ..., a(T1)Xy),

for some polynomial g € k[z1, ..., 2. In particular, for every element a € k(z1), there exists s € N
such that a(x1)%« is integral over k[zq]. But k[z4] is a PID, hence an UFD, and thus is integrally
closed. Therefore a(z1)®a € k[z1]. This is obviously false, as it means that every rational function
a € k(z1) is of the form

h(z1)
a= ,
a(x1)®
for some s € N and h(z1) € k[z1) (H+($1) is clearly not of that form). This contradiction show

that z; is, in fact, algebraic. O
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Lemma 4.14. Let k be algebraically closed, let a <1 k[x, ..., x,) be a proper ideal. Then Z(a)+ 0.

Proof. Let (1) #a<k[zy,...,x,]. Let m be a maximal ideal that contains a. Since a Cm, it follows
that Z(a) D Z(m), so that it suffices to show that Z(m) # 0 for every maximal ideal m of k[z1, ..., 2.

Let m < k[x1, ..., ] be any maximal ideal. Then L = k[z1, ..., z,]/m is a field. Moreover, L is a
homomorphic image of the ring k[z1, ..., z,] via the canonical epimorphism &: k[x1, ..., T, — k[z1, ...,
xn)/m= L. In particular, (k) is a subfield of L isomorphic to k — we shall thus identify elements
a € k with their images a +me L.

The generators x1, ..., &, of the ring k[z1, ..., z,] are mapped by x onto the generators z; +m, ...,
Zn+mof L. Since L is a field, by Lemma 4.13 L is a finite extension of k. But k is algebraically
closed, so that it does not have any proper finite extensions, and thus k= L. In particular 1 +m,...,
Tn+meEk and it suffices to show that every f €m vanishes at (z1+m,...,z, +m). Indeed:

flxr4+m, .z +m)= f(k(z1), ..., k(xn)) =k(f(21, ..., 20)) = f+m=m. O

Lemma 4.15. Let k be algebraically closed, let a=(f1,..., fr) <klx1,...,xy]. Then Z(a)=0 if and
only if there exist polynomials hy, ..., h, € k[x1, ..., z,] such that

fihi+ ...+ frh.=1.

Proof. If the condition of Lemma 4.15 is satisfied, then a = (1) and thus Z(a) = 0. If it is not
satisfied, then a# (1) and by Lemma 4.14 Z(a) #0. O

Lemma 4.16. Let k be algebraically closed, let a < klx1, ..., ©y] and let f € T(Z(a)). Then
f erad(a).

Proof. The theorem is trivially satisfied when f=0. Assume then f#0 and let a=(f1,..., fr).
Consider the ring of polynomials in n+ 1 variables k[x1, ..., Zn, 2] and its elements

flv"': fT71_Z'.f'
Let g=1— z-f. The polynomials fi,..., f», g have no common zero in k" *!, as every common zero

of fi,..., fr in k" *1is also a zero of f and thus g takes there the value 1. By Lemma 4.15 there
exist polynomials g1, ..., gr, h € k[x1, ..., Ty, 2] such that

flgl+ et frgr+(1 *Zf)h:l

We might as well consider this equality holds in the function field k(z1, ..., %, 2) and then substitute
% for z. This yields

figi+ ...+ frgr=1,

where the ¢;’s have denominators equal to powers of f. Multiplying both sides by a sufficiently
large power of f we get

f1h1+--~+f7'hr:fm7

for some hq, ..., hy € k[z1, ..., Ty)]. O

The Nullstellensatz now follows from Lemma 4.16 and Remark 4.7.
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