
3 Affine algebraic sets.

3.1 Affine algebraic sets and their ideals.

Let k be any field.

Definition 3.1. A zero of a polynomial f ∈ k[x1, ..., xn] in the affine space kn is a point
(a1, ..., an)∈ kn such that f(a1, ..., an) =0.

An affine algebraic set V is a subset of the affine space kn consisting of all common zeros of
some set of polynomials S ⊆ k[x1, ..., xn]:

V = {(a1, ..., an)∈ kn| f(a1, ..., an)= 0 for all f ∈S}.

We shall call the set V to be defined by the set of polynomials S and denote by V =Z(S).

Remark 3.2. Let S ⊆ k[x1, ..., xn] and let a be the ideal of k[x1, ..., xn] generated by S. Then

Z(S)=Z(a).

Proof. Since S ⊆ a, every common zero of polynomials from a is also a zero of polynomials from
S, so that Z(S)⊇Z(a). Conversely, if (a1, ..., an) ∈ kn is a common zero of all polynomials from
S, then it necessarily is a zero of every polynomial of the form

f1h1+ ...+ fmhm,

where f1, ..., fm∈S, h1, ..., hm∈ k[x1, ..., xn] and m∈N. It is thus a zero of every polynomial from
a and hence Z(S)⊆Z(a). !

Remark 3.3. Let S ⊆k[x1, ..., xn]. Then there exists a finite set {f1, ..., fr}⊆k[x1, ..., xn] such that

Z(S)=Z(f1, ..., fr).

Proof. By Remark 3.2 Z(S) = Z(a), where a = (S). By Hilbert’s basis theorem, a is finitely
generated, so a=(f1, ..., fr), for some f1, ..., fr∈ k[x1, ..., xn]. Applying Remark 3.2 once again we
obtain Z(a) =Z(f1, ..., fr). !

Remark 3.4. Let V ⊆kn be an affine algebraic set. The set I(V ) of all polynomials whose common
zeros coincide with V :

I(V )= {f ∈ k[x1, ..., xn]| f(a1, ..., an)= 0 for all (a1, ..., an)∈V }

is an ideal of k[x1, ..., xn].

Proof. If f , g ∈ I(V ), then

(f + g)(a1, ..., an) = f(a1, ..., an)+ g(a1, ..., an)= 0+0=0,

for all (a1, ..., an)∈V . If, moreover, h∈ k[x1, ..., xn], then

(h·f)(a1, ..., an) =h(a1, ..., an)·f(a1, ..., an) =h(a1, ..., an)·0= 0,
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for all (a1, ..., an)∈V . !

Definition 3.5. Let V ⊆ kn be an affine algebraic set. The ideal I(V ) consisting of polynomials
whose common zeros constitute V shall be called the ideal of the affine algebraic set V.

Remark 3.6. Let V , V1, V2⊂kn be affine algebraic sets in kn, let a,a1, a2 be ideals of k[x1, ..., xn].
Then:

1. a1⊆ a2⇒Z(a1)⊇Z(a2),

2. I(Z(a))⊇ a,

3. Z(I(V ))=V ,

4. V1⊆V2⇔ I(V1)⊇ I(V2),

5. V1=V2⇔ I(V1)= I(V2).

Proof. 1. and 2. are obvious.

In order to show 3., observe that Z(I(V ))⊇V is clear as well, and for the other inclusion assume
that V =Z(a), for some a"k[x1, ..., xn]. But then I(V )=I(Z(a))⊇a, and the result follows by 1.

4. is immediate.

For the proof of 5. it suffices to show that if I(V1) ⊇ I(V2), then V1 ⊆ V2. But this is clear by 1.
and 3. !

Lemma 3.7. Let f , g ∈ k[x1, x2] and assume that f is irreducible in k[x1, x2] and that f ! g. Then
the system of equations

f(x1, x2)= 0 and g(x1, x2)= 0

has only a finite number of solutions in the field k.

Proof. If degx1f =0, then 0=/ f ∈ k[x1] and the result is obvious, as a nonzero polynomial in one
variable has only finitely many zeros. If degx1f > 0, consider f ∈ k[x1, x2] as an element of the
ring k(x2)[x1]. As f is irreducible and does not divide g in k[x1, x2] =∼ k[x2][x1], by Gauss lemma
it is also irreducible and does not divide g in k(x2)[x1]. Since k(x2)[x1] is a PID, by the extended
Euclidean algorithm there exist polynomials α, β ∈ k(x2)[x1] such that

αf + βg=1.

Multiplying both sides of the above equality by the least common multiple of denominators of
coefficients of α and β, we yield

A(x1, x2)·f +B(x1, x2)·g=h(x2),

for some A(x1, x2),B(x1, x2)∈k[x1, x2] and h(x2)∈k[x2]. But h, as a nonzero polynomial in single
variable, has only finitely many zeros, which implies that the system of equations f(x1, x2)=0 and
g(x1, x2)= 0 has at most finitely many solutions. !

Theorem 3.8. Let f ∈k[x1,x2] be an irreducible polynomial in k[x1,x2]. If the curve Z(f) contains
infinitely many points, then

I(Z(f)) = (f).
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Proof. By Remark 3.6.2 it suffices to show that I(Z(f))⊆ (f). Fix g∈I(Z(f)). Then g vanishes
at infinitely many points of the curve Z(f), that is the system of equations f(x1, x2) = 0 and
g(x1, x2)= 0 has infinitely many solutions. By Lemma 3.7 f | g, that is g ∈ (f). !

3.2 Zariski topology.

Lemma 3.9. A finite sum of affine algebraic sets is an affine algebraic set. To be more precise,
let a1, ..., am be ideals of the ring k[x1, ..., xn]. Then

Z(a1)∪ ...∪Z(am)=Z(a1 · ... · am),

where a1 · ... · am= {
∑

i=1
k ai1ai2...aim| k ∈N, aij ∈ aj , j ∈ {1, ..., m}, i∈ {1, ..., k}}.

Proof. Let m=2 and let a1=(f1, ..., fr), a2=(g1, ..., gs). If (a1, ..., an)∈Z(a1)∪Z(a2), then either
fi(a1, ..., an) = 0 for all i ∈ {1, ..., r}, or gj(a1, ..., an) = 0 for all j ∈ {1, ..., s}. But then, for every
selection of a pair (i, j), i∈{1, ..., r}, j ∈{1, ..., s}, figj(a1, ..., an)=0, that is (a1, ..., an)∈Z(a1·a2).

Conversely, if (a1, ..., an) ∈/ Z(a1) ∪ Z(a2), then fi0(a1, ..., an) =/ 0, for some i0 ∈ {1, ..., r}, and
gj0(a1, ..., an)=/ 0, for some j0∈ {1, ..., s}. Hence fi0gj0(a1, ..., an)=/ 0, that is (a1, ..., an)∈/ Z(a1·a2).

For m> 2 we proceed by induction. !

Remark 3.10. Let a1, ..., am be ideals of the ring k[x1, ..., xn]. Then

Z(a1 · ... · am)=Z(a1∩ ...∩ am).

Proof. It suffices to observe that

Z(a1·...·am)⊆Z(a1)∪ ...∪Z(am)⊆Z(a1∩ ...∩ am)⊆Z(a1·...·am). !

Lemma 3.11. Intersection of any number of affine algebraic sets is an affine algebraic set. To be
more precise, let {ai| i∈ I} be a family of ideals of the ring k[x1, ..., xn]. Then

⋂

i∈I
Z(ai)=Z




(⋃

i∈I
ai

)

.

Proof. Let a=(
⋃
i∈I ai). Then

(a1, ..., an)∈Z(a) ⇔ ∀f ∈ a f(a1, ..., an) =0

⇔ ∀f ∈
⋃

i∈I
ai f(a1, ..., an)= 0

⇔ ∀i∈ I∀f ∈ ai f(a1, ..., an)= 0

⇔ ∀i∈ I (a1, ..., an)∈Z(ai)
⇔ (a1, ..., an)∈

⋂

i∈I
Z(ai).

!

Remark 3.12. Let a1, ..., am be ideals of the ring k[x1, ..., xn]. Then

Z(a1+ ...+ am)=Z(〈a1∪ ...∪ am〉).
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Theorem 3.13. In kn there is a topology whose closed sets are affine algebraic sets in kn.

Proof. Observe that ∅=Z({const.1}) and kn=Z({const.0}). The rest of the proof follows from
Lemmas 3.9 and 3.11. !

Definition 3.14. The topology of kn defined by affine algebraic sets is called the Zariski topology
in kn.

Remark 3.15. In every nonempty family of affine algebraic sets there exists a minimal affine
algebraic set.

Proof. Let R= {Vi| i ∈ I} be a family of affine algebraic sets. Let ai= I(Vi). Since k[x1, ..., xn]
is Noetherian, the family of ideals {ai| i∈ I} contains a maximal element, and, consequently, the
family R contains a minimal element. !

Remark 3.16. Every affine algebraic set V ⊆ kn is compact in the Zariski topology.

Proof. Let V ⊆
⋃
i∈IUi be a covering of V by open sets in the Zariski topology. Fix i1 ∈ I. If

V "Ui1, then there exists i2∈ I such that Ui1#Ui1∪Ui2. If V "Ui1∪Ui2, then there exists i3∈ I
such that Ui1∪Ui2#Ui1∪Ui2∪Ui3. Proceeding by induction we eventually exhibit a finite covering
V ⊆Ui1∪Ui2∪ ...∪Uim, for otherwise we would have constructed an infinite ascending sequence of
open sets, corresponding to an infinite descending sequence of closed sets, corresponding, in turn,
to an infinite ascending sequence of ideals in a Noetherian ring – a contradiction. !
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