2 Primary decomposition.
2.1 Primary decomposition.

Remark 2.1. Consider the ring Z and an element n € Z. Then there exist uniquely determined
prime numbers p;, ..., p,, and exponents ki, ..., k,,, € N such that

k Eum
n==xpi" ... D
or, equivalently:

(n)=(P") - ... (phr) = (Y1) N .0 ().

Definition 2.2. Let R be any ring. An ideal <A R is called primary, if q#+ R and for alla,b€ R

abegAb¢q=IneN a"€q.

Example 2.3.
1. Every prime ideal is primary.
2. An ideal in Z generated by a power of a prime number is primary.

3. Let R be a principal ideal domain. Then q is primary if and only if q=p", for a prime ideal p.

Proof. 1. and 2. are obvious. In order to show 3., assume that q=p". As R is a PID, it follows
that p=(p), for some prime element p € R. Consequently, q=(p)" = (p™). Say a-b€ q=(p™) with
b¢ q=(p™), for some a,b€ R. Then p"|a-b and p"1b. As a PID, R is a unique factorization domain,
so that it follows p| a, and, consequently, p™|a, that is a™ € q.

Conversely, assume that q is primary. Let q = (¢), for some ¢ € R. Suppose that ¢ # u-p™, for all
units u € U(R), all prime elements p € R, and all n € N. Then, by unique factorization, ¢ is divisible
by two different prime elements, say p and ¢. Let ¢=a-b with p|a and ¢|b. Then c|a-b and c1tb,
but also cfa™, for all n € N, which means that q= (¢) is not primary — a contradiction. O

Lemma 2.4. Let R be a ring, let ¢ < R be a proper ideal in R. The following conditions are
equivalent:

1. q 18 primary,
ii. every zero dwisor in R/q is nilpotent,

iti. the zero ideal in R/q is primary.
Proof. It suffices to notice that q being primary is equivalent to the following condition in R/q:

(a+q)(b+q) =qra+q#q=IneN(a+q)"=q. .

Example 2.5. The ideal (x, y?) < k[z, y], where k is any field, is primary, but is not a power of
a prime ideal.



Proof. Observe that every polynomial f(x,y) € k[z, y] can be written as

flx,y)=z-g(x,y)+hy) =z-g(x,y) + y*h(y) +ay+D,

with g(z,y) € klz,y], h(y), hi(y) € k[y] and a,b e k. It then follows that the map

klz,yl/a— kly]/ (v?), fl@,y)+a—=ay+d+(y?)

is a well-defined ring isomorphism, so that k[z, y] /q = k[y]/ (v?).

In order to show that q is primary, we note that k[y] is a PID, and y is a prime element of k[y],
so that, by Example 2.3.3 the ideal (y?) is primary. Thus, by Lemma 2.4.iii, the zero ideal in the
ring k[y]/ (y?) is primary, and so is the zero ideal in the isomorphic ring k[z, y] /q, leading to q
being primary.

We proceed to show that g is not a power of a prime ideal. Firstly, q is not prime itself, as the
ring k[z, y] /q is not a domain: the isomorphic ring k[y] / (v*) has zero divisors, for example
(y+ (y?)?= (y?). Secondly, suppose that q=p=, for some prime ideal p < k[z, y]. Since

(z,y%)=q=p"Cp,

it follows that x,y? €p. As p is prime, also y € p. Consequently, (z,y) Cp, but as (z,y) is maximal,
it follows (z,y) =p. Thus q=p" = (x,y)". On the other hand

(z,9)*CaC (2, ),
which yields a contradiction. O
Definition 2.6. Let R be a ring. An ideal n<<R, 0#n is irreducible if, for all a,b <R

n=anNnb=n=avn=>b.

Example 2.7.
1. Every maximal ideal is irreducible.
2. Every prime ideal is irreducible.

3. An ideal n< R is irreducible if and only if the zero ideal in R /n is irreducible.

Proof. 1. is obvious. For the proof of 2., suppose that p is a prime ideal of a ring R such that
p=anb, for some a,b < R, with pC a and p C b. Then there exist a€a\p and b€ b\ p. Clearly
a-b €p implying a € a or b € p, which yields a contradiction.

In order to show 3., assume that n is an irreducible ideal of a ring R. Let
(n)=ANB,

for some ideals A, B <1 R/n. Let a = k7 1(A) and b = x~1(B), where x denotes the canonical
epimorphism k: R— R/n, a 5 a+n. Then

n=r"H®n)=r"1A)NK"Y(B)=anb.

As n is irreducible, either n=a or n=b, which leads to (n) =2 or (n) =*B.



Conversely, assume that (n) is an irreducible ideal in R /n. Let
n=anb,
for some ideals a,b < R. Let A= x(a) and B = «(b). Then
(n)=r(m)=r(anb)=r(a)Nr(b) =2ANB;

indeed, clearly k(anb) C x(a) Nr(b), and for the other inclusion fix 7€ k(a) Nk(b). Thus g=k(a),
for some a € a, and 7= k(b), for some b € b. Hence a — b € ker k =n, so that a = b + n, for some
n €n, but as n C b, this yields a € b and, consequently, a €anb.

Now, by irreducibility of (n), we either get (n) =2, leading to n=a, or (n) =B, leading ton="56. O
Lemma 2.8. Let R be Noetherian. Every irreducible ideal in R is primary.

Proof. Let n be an irreducible ideal in a Noetherian ring R. By Lemma 2.4.2 it suffices to show
that in the ring A /n every zero divisor is nilpotent. Let Z, § € R/n be such that £y =0 with g+ 0.
For t € R/n let

Amt={ze R/n|zt =0}.
One easily checks that Annt <t R/n, and thus
Anmnz CAnmz2C...CAnnz" C...

is an ascending chain of ideals. Since R is Noetherian, so is R /n, and hence there exists n € N such
that

Anmnz"=Ammz"tl=.. .

We claim that (") N (y) = (0). Indeed, let @ € (z") N (y). Then a=ba" and a = ¢y, for some b,
¢ € R/n. Hence

bzntl=bzng =az=cyr=c0=0,
so that b € AnnZ"*! = Ann Z" and, consequently, @=bz" = 0. This proves the claim.

By Example 2.7.3 the zero ideal of R/n is irreducible. Thus, by the above claim, (z") = (0), as
7 € (y) and §#0. Therefore z" =0, that is Z is nilpotent. O

Lemma 2.9. Let R be Noetherian, let a <t R be a proper ideal. Then a is an intersection of a finite
number of irreducible ideals.

Proof. Suppose that there exists a nonempty family R of proper ideals that are not intersections of
finite numbers of irreducible ideals. Since R is Noetherian, the family R contains a maximal element
¢. In particular, ¢ is not irreducible. Let a,b€ R with a,b¢ ¢ and let a=c¢+ (a) and b=c+ (b). Then

c=anb, cCa, cCh,

which means that a, b ¢ R. Thus both a and b are intersections of finite numbers of irreducible
ideals, and so is ¢ — a contradiction. O

Theorem 2.10. Let R be Noetherian, let a <\ R be a proper ideal. Then a is an intersection of a
finite number of primary ideals.



Proof. By Lemma 2.9 every ideal is an intersection of a finite number of irreducible ideals, and

by Lemma 2.8 every irreducible ideal in R is primary.

2.2 Radical of an ideal.

Definition 2.11. Let R be a ring, let a<t R. The radical of the ideal a is defined to be

rada={reR|IneNr" €a}.

Remark 2.12. Let R be a ring, let a << R. Then rad a is an ideal.

Proof. Fix a,b€rada. Then a™ € a and b™ € a, for some n,m € N. But then

(a_b)n+m71 — anamfl_'_(n-f—'l’ln—1)anamflb+”'+(n—;ﬂjzl)anbmfl

+ ("*m* 1)a"_1bm+ ("*m* 1)a”_2bmb+ bl e,
m m+1

which means a — b €rad a. Moreover, if r € R, then
(ra)*=r"a" € a,

that is ra €rad a.

Remark 2.13. Let R be a ring, let a,b < R.
1. aCrada,
2. aCb=radaCradb,
3. rad (rada) =rad a,
4. rada-b=radanb,
5. radanb=radaNradb,
6. rada= (1)< a=(1),
7. rada+b=rad(rad a+radb),

8. a+b=(1)erada+radb=(1).

Proof. 1. and 2. follow directly from the definiton of a radical.

O

For the proof of 3., fix a €rad(rad a). Then a" € rad a, for some n € N. But then a"™ = (a")™ € q,

for some m € N, that is a €rad a.

In order to prove 4., as a-b C aNb, in view of 2. also rad a-b C rad a N rad b and it suffices to
show the other inclusion. Fix a € rad aNb. Thus a™ € aN b, for some n € N, and, consequently,

a’=a"a" € a-b.

To show 5., since anbCaand aNnbCb, by 2. radanbCrada and radanb Cradb, so it suffices to
show the other inclusion. Fix a €radanradb. Then a™ € a and a™ € b, for some n, m € N. Hence

a"t™m=qa"a™ €anb, so that acradanb.

6. is clear, since 1 erada<1=1"€aq.



To show 6. notice that, as a+b=(aUb) C (radaUrad b) =rad a+rad b, one inclusion follows from
2., and it suffices to justify the other one. Fix a € rad(rad a4+ rad b). Then a™ € rad a + rad b, for
some n € N. Hence a” =b+ ¢ with berad a and ¢ €rad b, that is b* € a and ¢! € b, for some k,I € N.
Therefore a* D = (¢™)k+! = (b 4 ¢)*+! = bFz + cly, for some z,y € R, that is a"*+) € a + b and,
as a result, a €rad(a+b).

Finally, for the proof of 7. firstly observe, that if 1 € a 4+ b then, by 1. also 1 € rad a + rad b.
Conversely, if 1 erada+rad b then, by 1. and 7., 1 €rad(rad a +rad b) =rad a+rad b. Therefore,
by 6., 1€a+b. |

Remark 2.14. Let R be a ring, let p << R be a prime ideal, let m € N. Then rad p™ =p.
Proof. Fix a € rad p™. Then a™ € p™, for some n € N, and since p D p% D ... D p™ it follows that
a™ € p. But as p is a prime ideal, this implies a € p.

Conversely, fix a €p. Then a™ € p™, so that a € rad p. O

Definition 2.15. Let R be a ring. The set of all nilpotent elements of R:
NilR={a€R|3IneNa"=0}
18 called the nilradical of R.

Remark 2.16. Let R be a ring. Then Nil R <1 R.

Proof. Let a,beNil R. Then a" =0 and " =0, for some n,m € N. Consequently

(a+b)n+m — anam+(nj;m)anam—lb+...+(Tb;m)anbm

n+m) n—1m nLM
+ (0 )
= O’
so that a+beNil R. Clearly, for r € R, also (ra)™=r"a"™=0, hence ra € Nil R. O

Proposition 2.17. Let R be a ring. Then

Nileﬂ {p|p € Spec R}.

Proof. Denote A= {p|p €Spec R}. Fix a € Nil R, and in order to show that a € A, fix a prime
ideal p << R. As a™ =0, for some n € N, this implies that a”=a™~la=0¢cp. Since p is prime, either
a€p, or a® L cp —in the latter case a simple inductive argument follows.

For the other inclusion fix a € R and assume a ¢ Nil R. Thus a™#0, for all n € N. Let
R={a<R|a"¢a, for all n € N}.

By our assumption, (0) € R. One also easily verifies that if £ is a chain of ideals from £, then also
U £€R. Thus, by Zorn’s Lemma, the family R has a maximal element p.

We shall show that p is a prime ideal. Fix x,y € R and assume that both x ¢ p and y ¢ p. Then

pCp+(z) and pCp+(y),



which, by the maximality of p, means that p+ (z),p + (y) ¢ R, that is, for some n, m € N:

a*ep+(x) and a™ep+ (y).
But then
a™tme (p+ () (b + (y) =p> +p-(2) +p-(y) + (2y).

Since p2 + p-(x) + p-(y) C p this means aT™ € p+ (xy). Therefore p+ (zy) ¢ R, and, in particular,
xy ¢ p (for otherwise p+ (zy) =p € R). This proves that p is prime.

Now, a™ ¢ p, for all n € N, and, in particular, a ¢ p. This means a ¢ A. O
Remark 2.18. Let R be a ring, let a <t R. If rad a is a maximal ideal, then a is primary.

Proof. Let m=rad a be a maximal ideal and let k: R— R /a be the canonical epimorphism. Then,
for ae R and n€ N:

(a+a)"=0€R/asa"casaem,

that is k(m) equals the nilradical of R /a. Since Nil R /a = [ {B] B € Spec R/ a}, it follows
that k() < R and m C k~1(P), for P € Spec R/a. But, as m is maximal, this, in fact, means
m =k~ 1('P), for P € Spec R/a. Hence R/a contains exactly one prime ideal, which is equal to
Nil R /a. Consequently, R/ a contains only one maximal ideal, namely R /a. Therefore every
element of R /a outside Nil R /a is a unit, for otherwise it would be contained in one of the maximal
ideals of R/a. Thus every zero divisor of R/a has to be nilpotent, and by Lemma 2.4.ii the ideal
a is primary. O

Lemma 2.19. Let R be a ring, let q<<R be a primary ideal. Then radq is prime.

Proof. Let a,b€ R and assume that ab€radq. Thus a™0" = (ab)" €q. If a™ € q then a €radq. If
a™ ¢ q, then, as q is primary, "™ = (b")™ € q, for some m € N. But then b€eradg. |

Definition 2.20. Let R be a ring, let ¢ << R be a primary ideal and let p=radq. Then q is called
p-primary.

Remark 2.21. Let R be a ring, let m <1 R be a maximal ideal, let m € N. Then m™ is m-primary.

Proof. Let m < R be a maximal ideal and let m € N. Then m is also prime, and by Remark 2.14
rad m™ =m is a maximal ideal. But then, by Remark 2.18, it is primary. O

Lemma 2.22. Let R be a ring, let qu,...,qy, be p-primary. Then q1N...Nqy s p-primary.

Proof. Let qy,...,q, be p-primary and denote q=¢q;N...Nq,. By Remark 2.13.5
radg=radgqiN...Ngy,=radq1N...Nradq,=pN...Np=p,

and it remains to show that q is primary. Let a,b € R and assume ab € g with b ¢ q. In particular,
b ¢ q;, for some ip € {1,...,n}. At the same time, ab € q;, and g, is primary, so that ak e 4, for
some k € N. Thus a €rad q;,=p. But we have already shown that p=rad q, so that a” € q for some
m € IN. This proves that q is primary. O



Definition 2.23. Let R be a ring, let a <1 R be a proper ideal and let

a=qi1N...Nqp

be a primary decomposition of a. If

;2 %
i+
and

rad q; #radq; fori#j,

then the primary decomposition a=q1N...Nqy, is called minimal.



Theorem 2.24. (Noether-Lasker) Let R be a Noetherian ring, let a<\ R be a proper ideal. Then
q has a minimal primary decomposition and the prime ideals p; =rad q; are uniquely determined
up to the order.
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