2 Primary decomposition.

2.1 Primary decomposition.

Remark 2.1. Consider the ring \mathbb{Z} and an element $n \in \mathbb{Z}$. Then there exist uniquely determined prime numbers $p_1, ..., p_m$ and exponents $k_1, ..., k_m \in \mathbb{N}$ such that

$$n = \pm p_1^{k_1} \cdot \ldots \cdot p_m^{k_m}$$

or, equivalently:

$$(n) = (p_1^{k_1}) \cdot \ldots \cdot (p_m^{k_m}) = (p_1^{k_1}) \cap \ldots \cap (p_m^{k_m}).$$

Definition 2.2. Let R be any ring. An ideal $q \triangleleft R$ is called **primary**, if $q \neq R$ and for all $a, b \in R$

$$ab \in \mathfrak{q} \land b \notin \mathfrak{q} \Rightarrow \exists n \in \mathbb{N} \quad a^n \in \mathfrak{q}.$$

Example 2.3.

- 1. Every prime ideal is primary.
- 2. An ideal in \mathbb{Z} generated by a power of a prime number is primary.
- 3. Let R be a principal ideal domain. Then q is primary if and only if $q = p^n$, for a prime ideal p.

Proof. 1. and 2. are obvious. In order to show 3., assume that $\mathbf{q} = \mathbf{p}^n$. As R is a PID, it follows that $\mathbf{p} = (p)$, for some prime element $p \in R$. Consequently, $\mathbf{q} = (p)^n = (p^n)$. Say $a \cdot b \in \mathbf{q} = (p^n)$ with $b \notin \mathbf{q} = (p^n)$, for some $a, b \in R$. Then $p^n | a \cdot b$ and $p^n \nmid b$. As a PID, R is a unique factorization domain, so that it follows p | a, and, consequently, $p^n | a$, that is $a^n \in \mathbf{q}$.

Conversely, assume that \mathfrak{q} is primary. Let $\mathfrak{q} = (c)$, for some $c \in R$. Suppose that $c \neq u \cdot p^n$, for all units $u \in U(R)$, all prime elements $p \in R$, and all $n \in \mathbb{N}$. Then, by unique factorization, c is divisible by two different prime elements, say p and q. Let $c = a \cdot b$ with $p \mid a$ and $q \mid b$. Then $c \mid a \cdot b$ and $c \nmid b$, but also $c \nmid a^n$, for all $n \in \mathbb{N}$, which means that $\mathfrak{q} = (c)$ is not primary – a contradiction.

Lemma 2.4. Let R be a ring, let $q \triangleleft R$ be a proper ideal in R. The following conditions are equivalent:

- i. q is primary,
- *ii. every zero divisor in* R/q *is nilpotent,*
- *iii.* the zero ideal in R/\mathfrak{q} is primary.

Proof. It suffices to notice that \mathfrak{q} being primary is equivalent to the following condition in R/\mathfrak{q} :

$$(a+\mathfrak{q})\cdot(b+\mathfrak{q})=\mathfrak{q}\wedge a+\mathfrak{q}\neq\mathfrak{q}\Rightarrow\exists n\in\mathbb{N}\ (a+\mathfrak{q})^n=\mathfrak{q}.$$

Example 2.5. The ideal $(x, y^2) \triangleleft k[x, y]$, where k is any field, is primary, but is not a power of a prime ideal.

Proof. Observe that every polynomial $f(x, y) \in k[x, y]$ can be written as

$$f(x, y) = x \cdot g(x, y) + h(y) = x \cdot g(x, y) + y^2 \cdot h_1(y) + a \cdot y + b$$

with $g(x, y) \in k[x, y], h(y), h_1(y) \in k[y]$ and $a, b \in k$. It then follows that the map

$$k[x, y]/\mathfrak{q} \rightarrow k[y]/(y^2), \qquad f(x, y) + \mathfrak{q} \mapsto a \cdot y + b + (y^2)$$

is a well-defined ring isomorphism, so that $k[x, y]/\mathfrak{q} \cong k[y]/(y^2)$.

In order to show that \mathfrak{q} is primary, we note that k[y] is a PID, and y is a prime element of k[y], so that, by Example 2.3.3 the ideal (y^2) is primary. Thus, by Lemma 2.4.iii, the zero ideal in the ring $k[y]/(y^2)$ is primary, and so is the zero ideal in the isomorphic ring $k[x, y]/\mathfrak{q}$, leading to \mathfrak{q} being primary.

We proceed to show that \mathfrak{q} is not a power of a prime ideal. Firstly, \mathfrak{q} is not prime itself, as the ring $k[x, y] / \mathfrak{q}$ is not a domain: the isomorphic ring $k[y] / (y^2)$ has zero divisors, for example $(y + (y^2))^2 = (y^2)$. Secondly, suppose that $\mathfrak{q} = \mathfrak{p}^n$, for some prime ideal $\mathfrak{p} \triangleleft k[x, y]$. Since

$$(x, y^2) = \mathfrak{q} = \mathfrak{p}^n \subseteq \mathfrak{p},$$

it follows that $x, y^2 \in \mathfrak{p}$. As \mathfrak{p} is prime, also $y \in \mathfrak{p}$. Consequently, $(x, y) \subseteq \mathfrak{p}$, but as (x, y) is maximal, it follows $(x, y) = \mathfrak{p}$. Thus $\mathfrak{q} = \mathfrak{p}^n = (x, y)^n$. On the other hand

$$(x,y)^2 \subsetneq \mathfrak{q} \subsetneq (x,y),$$

which yields a contradiction.

Definition 2.6. Let R be a ring. An ideal $\mathfrak{n} \triangleleft R$, $0 \neq \mathfrak{n}$ is *irreducible* if, for all $\mathfrak{a}, \mathfrak{b} \triangleleft R$

$$\mathfrak{n} = \mathfrak{a} \cap \mathfrak{b} \Rightarrow \mathfrak{n} = \mathfrak{a} \vee \mathfrak{n} = \mathfrak{b}.$$

Example 2.7.

- 1. Every maximal ideal is irreducible.
- 2. Every prime ideal is irreducible.
- 3. An ideal $\mathfrak{n} \triangleleft R$ is irreducible if and only if the zero ideal in R/\mathfrak{n} is irreducible.

Proof. 1. is obvious. For the proof of 2., suppose that \mathfrak{p} is a prime ideal of a ring R such that $\mathfrak{p} = \mathfrak{a} \cap \mathfrak{b}$, for some $\mathfrak{a}, \mathfrak{b} \triangleleft R$, with $\mathfrak{p} \subsetneq \mathfrak{a}$ and $\mathfrak{p} \subsetneq \mathfrak{b}$. Then there exist $a \in \mathfrak{a} \setminus \mathfrak{p}$ and $b \in \mathfrak{b} \setminus \mathfrak{p}$. Clearly $a \cdot b \in \mathfrak{p}$ implying $a \in \mathfrak{a}$ or $b \in \mathfrak{p}$, which yields a contradiction.

In order to show 3., assume that \mathfrak{n} is an irreducible ideal of a ring R. Let

$$(\mathfrak{n}) = \mathfrak{A} \cap \mathfrak{B},$$

for some ideals $\mathfrak{A}, \mathfrak{B} \triangleleft R/\mathfrak{n}$. Let $\mathfrak{a} = \kappa^{-1}(\mathfrak{A})$ and $\mathfrak{b} = \kappa^{-1}(\mathfrak{B})$, where κ denotes the canonical epimorphism $\kappa: R \rightarrow R/\mathfrak{n}, a \stackrel{\kappa}{\longrightarrow} a + \mathfrak{n}$. Then

$$\mathfrak{n} = \kappa^{-1}((\mathfrak{n})) = \kappa^{-1}(\mathfrak{A}) \cap \kappa^{-1}(\mathfrak{B}) = \mathfrak{a} \cap \mathfrak{b}.$$

As \mathfrak{n} is irreducible, either $\mathfrak{n} = \mathfrak{a}$ or $\mathfrak{n} = \mathfrak{b}$, which leads to $(\mathfrak{n}) = \mathfrak{A}$ or $(\mathfrak{n}) = \mathfrak{B}$.

Conversely, assume that (\mathfrak{n}) is an irreducible ideal in R/\mathfrak{n} . Let

$$\mathfrak{n} = \mathfrak{a} \cap \mathfrak{b},$$

for some ideals $\mathfrak{a}, \mathfrak{b} \triangleleft R$. Let $\mathfrak{A} = \kappa(\mathfrak{a})$ and $\mathfrak{B} = \kappa(\mathfrak{b})$. Then

$$(\mathfrak{n}) = \kappa(\mathfrak{n}) = \kappa(\mathfrak{a} \cap \mathfrak{b}) = \kappa(\mathfrak{a}) \cap \kappa(\mathfrak{b}) = \mathfrak{A} \cap \mathfrak{B};$$

indeed, clearly $\kappa(\mathfrak{a} \cap \mathfrak{b}) \subset \kappa(\mathfrak{a}) \cap \kappa(\mathfrak{b})$, and for the other inclusion fix $\overline{y} \in \kappa(\mathfrak{a}) \cap \kappa(\mathfrak{b})$. Thus $\overline{y} = \kappa(a)$, for some $a \in \mathfrak{a}$, and $\overline{y} = \kappa(b)$, for some $b \in \mathfrak{b}$. Hence $a - b \in \ker \kappa = \mathfrak{n}$, so that a = b + n, for some $n \in \mathfrak{n}$, but as $\mathfrak{n} \subseteq \mathfrak{b}$, this yields $a \in \mathfrak{b}$ and, consequently, $a \in \mathfrak{a} \cap \mathfrak{b}$.

Now, by irreducibility of (\mathfrak{n}) , we either get $(\mathfrak{n}) = \mathfrak{A}$, leading to $\mathfrak{n} = \mathfrak{a}$, or $(\mathfrak{n}) = \mathfrak{B}$, leading to $\mathfrak{n} = \mathfrak{b}$. \Box

Lemma 2.8. Let R be Noetherian. Every irreducible ideal in R is primary.

Proof. Let \mathfrak{n} be an irreducible ideal in a Noetherian ring R. By Lemma 2.4.2 it suffices to show that in the ring A/\mathfrak{n} every zero divisor is nilpotent. Let $\bar{x}, \bar{y} \in R/\mathfrak{n}$ be such that $\bar{x}\bar{y} = \bar{0}$ with $\bar{y} \neq \bar{0}$. For $\bar{t} \in R/\mathfrak{n}$ let

$$\operatorname{Ann} \bar{t} = \{ \bar{z} \in R/\mathfrak{n} | \ \bar{z}\bar{t} = 0 \}.$$

One easily checks that $\operatorname{Ann} \overline{t} \triangleleft R/\mathfrak{n}$, and thus

$$\operatorname{Ann} \bar{x} \subseteq \operatorname{Ann} \bar{x}^2 \subseteq \ldots \subseteq \operatorname{Ann} \bar{x}^n \subseteq \ldots$$

is an ascending chain of ideals. Since R is Noetherian, so is $R/\mathfrak{n},$ and hence there exists $n\in\mathbb{N}$ such that

$$\operatorname{Ann} \bar{x}^n = \operatorname{Ann} \bar{x}^{n+1} = \dots$$

We claim that $(\bar{x}^n) \cap (\bar{y}) = (\bar{0})$. Indeed, let $\bar{a} \in (\bar{x}^n) \cap (\bar{y})$. Then $\bar{a} = \bar{b} \bar{x}^n$ and $\bar{a} = \bar{c} \bar{y}$, for some \bar{b} , $\bar{c} \in R/\mathfrak{n}$. Hence

$$\bar{b}\bar{x}^{n+1} = \bar{b}\bar{x}^n\bar{x} = \bar{a}\bar{x} = \bar{c}\bar{y}\bar{x} = \bar{c}\bar{0} = \bar{0},$$

so that $\bar{b} \in \operatorname{Ann} \bar{x}^{n+1} = \operatorname{Ann} \bar{x}^n$ and, consequently, $\bar{a} = \bar{b} \bar{x}^n = \bar{0}$. This proves the claim.

By Example 2.7.3 the zero ideal of R/\mathfrak{n} is irreducible. Thus, by the above claim, $(\bar{x}^n) = (\bar{0})$, as $\bar{y} \in (\bar{y})$ and $\bar{y} \neq \bar{0}$. Therefore $\bar{x}^n = \bar{0}$, that is \bar{x} is nilpotent.

Lemma 2.9. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of irreducible ideals.

Proof. Suppose that there exists a nonempty family \mathcal{R} of proper ideals that are not intersections of finite numbers of irreducible ideals. Since R is Noetherian, the family \mathcal{R} contains a maximal element \mathfrak{c} . In particular, \mathfrak{c} is not irreducible. Let $a, b \in R$ with $a, b \notin \mathfrak{c}$ and let $\mathfrak{a} = \mathfrak{c} + (a)$ and $\mathfrak{b} = \mathfrak{c} + (b)$. Then

$$\mathfrak{c} = \mathfrak{a} \cap \mathfrak{b}, \qquad \mathfrak{c} \subsetneq \mathfrak{a}, \qquad \mathfrak{c} \subsetneq \mathfrak{b},$$

which means that $\mathfrak{a}, \mathfrak{b} \notin \mathcal{R}$. Thus both \mathfrak{a} and \mathfrak{b} are intersections of finite numbers of irreducible ideals, and so is $\mathfrak{c} - \mathfrak{a}$ contradiction.

Theorem 2.10. Let R be Noetherian, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{a} is an intersection of a finite number of primary ideals.

Proof. By Lemma 2.9 every ideal is an intersection of a finite number of irreducible ideals, and by Lemma 2.8 every irreducible ideal in R is primary.

2.2 Radical of an ideal.

Definition 2.11. Let R be a ring, let $\mathfrak{a} \triangleleft R$. The radical of the ideal \mathfrak{a} is defined to be

rad $\mathfrak{a} = \{ r \in R | \exists n \in \mathbb{N} r^n \in \mathfrak{a} \}.$

Remark 2.12. Let *R* be a ring, let $\mathfrak{a} \triangleleft R$. Then rad \mathfrak{a} is an ideal.

Proof. Fix $a, b \in \operatorname{rad} \mathfrak{a}$. Then $a^n \in \mathfrak{a}$ and $b^m \in \mathfrak{a}$, for some $n, m \in \mathbb{N}$. But then

$$\begin{array}{rcl} (a-b)^{n+m-1} &=& a^n a^{m-1} + \binom{n+m-1}{1} a^n a^{m-1} b + \ldots + \binom{n+m-1}{m-1} a^n b^{m-1} \\ &+& \binom{n+m-1}{m} a^{n-1} b^m + \binom{n+m-1}{m+1} a^{n-2} b^m b + \ldots + b^{n-1} b^m \in \mathfrak{a}, \end{array}$$

which means $a - b \in rad \mathfrak{a}$. Moreover, if $r \in R$, then

$$(ra)^n = r^n a^n \in \mathfrak{a},$$

that is $ra \in rad \mathfrak{a}$.

Remark 2.13. Let *R* be a ring, let $\mathfrak{a}, \mathfrak{b} \triangleleft R$.

- 1. $\mathfrak{a} \subseteq \operatorname{rad} \mathfrak{a}$,
- 2. $\mathfrak{a} \subseteq \mathfrak{b} \Rightarrow \operatorname{rad} \mathfrak{a} \subseteq \operatorname{rad} \mathfrak{b}$,
- 3. rad (rad \mathfrak{a}) = rad \mathfrak{a} ,
- 4. rad $\mathbf{a} \cdot \mathbf{b} = \operatorname{rad} \mathbf{a} \cap \mathbf{b}$,
- 5. rad $\mathfrak{a} \cap \mathfrak{b} = rad \mathfrak{a} \cap rad \mathfrak{b}$,
- 6. rad $\mathfrak{a} = (1) \Leftrightarrow \mathfrak{a} = (1)$,
- 7. rad $\mathfrak{a} + \mathfrak{b} = rad(rad \mathfrak{a} + rad \mathfrak{b})$,
- 8. $\mathfrak{a} + \mathfrak{b} = (1) \Leftrightarrow \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b} = (1).$

Proof. 1. and 2. follow directly from the definiton of a radical.

For the proof of 3., fix $a \in \operatorname{rad}(\operatorname{rad} \mathfrak{a})$. Then $a^n \in \operatorname{rad} \mathfrak{a}$, for some $n \in \mathbb{N}$. But then $a^{nm} = (a^n)^m \in \mathfrak{a}$, for some $m \in \mathbb{N}$, that is $a \in \operatorname{rad} \mathfrak{a}$.

In order to prove 4., as $\mathfrak{a} \cdot \mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$, in view of 2. also rad $\mathfrak{a} \cdot \mathfrak{b} \subseteq \operatorname{rad} \mathfrak{a} \cap \operatorname{rad} \mathfrak{b}$ and it suffices to show the other inclusion. Fix $a \in \operatorname{rad} \mathfrak{a} \cap \mathfrak{b}$. Thus $a^n \in \mathfrak{a} \cap \mathfrak{b}$, for some $n \in \mathbb{N}$, and, consequently, $a^{2n} = a^n a^n \in \mathfrak{a} \cdot \mathfrak{b}$.

To show 5., since $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{a}$ and $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{b}$, by 2. rad $\mathfrak{a} \cap \mathfrak{b} \subseteq \operatorname{rad} \mathfrak{a}$ and rad $\mathfrak{a} \cap \mathfrak{b} \subseteq \operatorname{rad} \mathfrak{b}$, so it suffices to show the other inclusion. Fix $a \in \operatorname{rad} \mathfrak{a} \cap \operatorname{rad} \mathfrak{b}$. Then $a^n \in \mathfrak{a}$ and $a^m \in \mathfrak{b}$, for some $n, m \in \mathbb{N}$. Hence $a^{n+m} = a^n a^m \in \mathfrak{a} \cap \mathfrak{b}$, so that $a \in \operatorname{rad} \mathfrak{a} \cap \mathfrak{b}$.

6. is clear, since $1 \in \operatorname{rad} \mathfrak{a} \Leftrightarrow 1 = 1^n \in \mathfrak{a}$.

To show 6. notice that, as $\mathfrak{a} + \mathfrak{b} = (\mathfrak{a} \cup \mathfrak{b}) \subseteq (\operatorname{rad} \mathfrak{a} \cup \operatorname{rad} \mathfrak{b}) = \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$, one inclusion follows from 2., and it suffices to justify the other one. Fix $a \in \operatorname{rad}(\operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b})$. Then $a^n \in \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$, for some $n \in \mathbb{N}$. Hence $a^n = b + c$ with $b \in \operatorname{rad} \mathfrak{a}$ and $c \in \operatorname{rad} \mathfrak{b}$, that is $b^k \in \mathfrak{a}$ and $c^l \in \mathfrak{b}$, for some $k, l \in \mathbb{N}$. Therefore $a^{n(k+l)} = (a^n)^{k+l} = (b+c)^{k+l} = b^k x + c^l y$, for some $x, y \in R$, that is $a^{n(k+l)} \in \mathfrak{a} + \mathfrak{b}$ and, as a result, $a \in \operatorname{rad}(\mathfrak{a} + \mathfrak{b})$.

Finally, for the proof of 7. firstly observe, that if $1 \in \mathfrak{a} + \mathfrak{b}$ then, by 1. also $1 \in \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$. Conversely, if $1 \in \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$ then, by 1. and 7., $1 \in \operatorname{rad}(\operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}) = \operatorname{rad} \mathfrak{a} + \operatorname{rad} \mathfrak{b}$. Therefore, by 6., $1 \in \mathfrak{a} + \mathfrak{b}$.

Remark 2.14. Let R be a ring, let $\mathfrak{p} \triangleleft R$ be a prime ideal, let $m \in \mathbb{N}$. Then rad $\mathfrak{p}^m = \mathfrak{p}$.

Proof. Fix $a \in \operatorname{rad} \mathfrak{p}^m$. Then $a^n \in \mathfrak{p}^m$, for some $n \in \mathbb{N}$, and since $\mathfrak{p} \supseteq \mathfrak{p}^2 \supseteq ... \supseteq \mathfrak{p}^m$ it follows that $a^n \in \mathfrak{p}$. But as \mathfrak{p} is a prime ideal, this implies $a \in \mathfrak{p}$.

Conversely, fix $a \in \mathfrak{p}$. Then $a^m \in \mathfrak{p}^m$, so that $a \in \operatorname{rad} \mathfrak{p}$.

Definition 2.15. Let R be a ring. The set of all nilpotent elements of R:

$$\operatorname{Nil} R = \{ a \in R | \exists n \in \mathbb{N} a^n = 0 \}$$

is called the *nilradical* of R.

Remark 2.16. Let *R* be a ring. Then Nil $R \triangleleft R$.

Proof. Let $a, b \in \text{Nil } R$. Then $a^n = 0$ and $b^m = 0$, for some $n, m \in \mathbb{N}$. Consequently

$$(a+b)^{n+m} = a^{n}a^{m} + \binom{n+m}{1}a^{n}a^{m-1}b + \dots + \binom{n+m}{m}a^{n}b^{m} + \binom{n+m}{m+1}a^{n-1}b^{m}b + \dots + b^{n}b^{m} = 0,$$

so that $a + b \in \operatorname{Nil} R$. Clearly, for $r \in R$, also $(ra)^n = r^n a^n = 0$, hence $ra \in \operatorname{Nil} R$.

Proposition 2.17. Let R be a ring. Then

Nil
$$R = \bigcap \{ \mathfrak{p} | \mathfrak{p} \in \operatorname{Spec} R \}.$$

Proof. Denote $A = \bigcap \{ \mathfrak{p} | \mathfrak{p} \in \operatorname{Spec} R \}$. Fix $a \in \operatorname{Nil} R$, and in order to show that $a \in A$, fix a prime ideal $\mathfrak{p} \triangleleft R$. As $a^n = 0$, for some $n \in \mathbb{N}$, this implies that $a^n = a^{n-1}a = 0 \in \mathfrak{p}$. Since \mathfrak{p} is prime, either $a \in \mathfrak{p}$, or $a^{n-1} \in \mathfrak{p}$ - in the latter case a simple inductive argument follows.

For the other inclusion fix $a \in R$ and assume $a \notin \text{Nil } R$. Thus $a^n \neq 0$, for all $n \in \mathbb{N}$. Let

$$\mathcal{R} = \{ \mathfrak{a} \triangleleft R \mid a^n \notin \mathfrak{a}, \text{ for all } n \in \mathbb{N} \}.$$

By our assumption, $(0) \in \mathcal{R}$. One also easily verifies that if \mathcal{L} is a chain of ideals from \mathcal{L} , then also $\bigcup \mathcal{L} \in \mathcal{R}$. Thus, by Zorn's Lemma, the family \mathcal{R} has a maximal element \mathfrak{p} .

We shall show that \mathfrak{p} is a prime ideal. Fix $x, y \in R$ and assume that both $x \notin \mathfrak{p}$ and $y \notin \mathfrak{p}$. Then

$$\mathfrak{p} \subsetneq \mathfrak{p} + (x) \qquad \text{ and } \qquad \mathfrak{p} \subsetneq \mathfrak{p} + (y),$$

which, by the maximality of \mathfrak{p} , means that $\mathfrak{p} + (x), \mathfrak{p} + (y) \notin \mathcal{R}$, that is, for some $n, m \in \mathbb{N}$:

 $a^n \in \mathfrak{p} + (x)$ and $a^m \in \mathfrak{p} + (y)$.

But then

$$a^{n+m} \in (\mathfrak{p} + (x)) \cdot (\mathfrak{p} + (y)) = \mathfrak{p}^2 + \mathfrak{p} \cdot (x) + \mathfrak{p} \cdot (y) + (xy) \cdot (y) = \mathfrak{p}^2 + \mathfrak{p} \cdot (x) + \mathfrak{p} \cdot (y) + (xy) \cdot (y) + (y) (y) +$$

Since $\mathfrak{p}^2 + \mathfrak{p} \cdot (x) + \mathfrak{p} \cdot (y) \subseteq \mathfrak{p}$ this means $a^{n+m} \in \mathfrak{p} + (xy)$. Therefore $\mathfrak{p} + (xy) \notin \mathcal{R}$, and, in particular, $xy \notin \mathfrak{p}$ (for otherwise $\mathfrak{p} + (xy) = \mathfrak{p} \in \mathcal{R}$). This proves that \mathfrak{p} is prime.

Now, $a^n \notin \mathfrak{p}$, for all $n \in \mathbb{N}$, and, in particular, $a \notin \mathfrak{p}$. This means $a \notin A$.

Remark 2.18. Let R be a ring, let $\mathfrak{a} \triangleleft R$. If rad \mathfrak{a} is a maximal ideal, then \mathfrak{a} is primary.

Proof. Let $\mathfrak{m} = \operatorname{rad} \mathfrak{a}$ be a maximal ideal and let $\kappa: R \to R/\mathfrak{a}$ be the canonical epimorphism. Then, for $a \in R$ and $n \in \mathbb{N}$:

$$(a + \mathfrak{a})^n = \overline{0} \in R / \mathfrak{a} \Leftrightarrow a^n \in \mathfrak{a} \Leftrightarrow a \in \mathfrak{m},$$

that is $\kappa(\mathfrak{m})$ equals the nilradical of R/\mathfrak{a} . Since Nil $R/\mathfrak{a} = \bigcap \{\mathfrak{P} \mid \mathfrak{P} \in \operatorname{Spec} R/\mathfrak{a}\}$, it follows that $\kappa^{-1}(\mathfrak{P}) \triangleleft R$ and $\mathfrak{m} \subseteq \kappa^{-1}(\mathfrak{P})$, for $\mathfrak{P} \in \operatorname{Spec} R/\mathfrak{a}$. But, as \mathfrak{m} is maximal, this, in fact, means $\mathfrak{m} = \kappa^{-1}(\mathfrak{P})$, for $\mathfrak{P} \in \operatorname{Spec} R/\mathfrak{a}$. Hence R/\mathfrak{a} contains exactly one prime ideal, which is equal to Nil R/\mathfrak{a} . Consequently, R/\mathfrak{a} contains only one maximal ideal, namely R/\mathfrak{a} . Therefore every element of R/\mathfrak{a} outside Nil R/\mathfrak{a} is a unit, for otherwise it would be contained in one of the maximal ideals of R/\mathfrak{a} . Thus every zero divisor of R/\mathfrak{a} has to be nilpotent, and by Lemma 2.4.ii the ideal \mathfrak{a} is primary.

Lemma 2.19. Let R be a ring, let $\mathfrak{q} \triangleleft R$ be a primary ideal. Then rad \mathfrak{q} is prime.

Proof. Let $a, b \in R$ and assume that $ab \in \operatorname{rad} \mathfrak{q}$. Thus $a^n b^n = (ab)^n \in \mathfrak{q}$. If $a^n \in \mathfrak{q}$ then $a \in \operatorname{rad} \mathfrak{q}$. If $a^n \notin \mathfrak{q}$, then, as \mathfrak{q} is primary, $b^{nm} = (b^n)^m \in \mathfrak{q}$, for some $m \in \mathbb{N}$. But then $b \in \operatorname{rad} \mathfrak{q}$.

Definition 2.20. Let R be a ring, let $q \triangleleft R$ be a primary ideal and let $\mathfrak{p} = \operatorname{rad} \mathfrak{q}$. Then \mathfrak{q} is called \mathfrak{p} -primary.

Remark 2.21. Let R be a ring, let $\mathfrak{m} \triangleleft R$ be a maximal ideal, let $m \in \mathbb{N}$. Then \mathfrak{m}^m is \mathfrak{m} -primary.

Proof. Let $\mathfrak{m} \triangleleft R$ be a maximal ideal and let $m \in \mathbb{N}$. Then \mathfrak{m} is also prime, and by Remark 2.14 rad $\mathfrak{m}^m = \mathfrak{m}$ is a maximal ideal. But then, by Remark 2.18, it is primary.

Lemma 2.22. Let R be a ring, let $\mathfrak{q}_1, \ldots, \mathfrak{q}_n$ be \mathfrak{p} -primary. Then $\mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$ is \mathfrak{p} -primary.

Proof. Let $\mathfrak{q}_1, ..., \mathfrak{q}_n$ be \mathfrak{p} -primary and denote $\mathfrak{q} = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$. By Remark 2.13.5

 $\operatorname{rad} \mathfrak{q} = \operatorname{rad} \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n = \operatorname{rad} \mathfrak{q}_1 \cap \ldots \cap \operatorname{rad} \mathfrak{q}_n = \mathfrak{p} \cap \ldots \cap \mathfrak{p} = \mathfrak{p},$

and it remains to show that \mathfrak{q} is primary. Let $a, b \in R$ and assume $ab \in \mathfrak{q}$ with $b \notin \mathfrak{q}$. In particular, $b \notin \mathfrak{q}_{i_0}$ for some $i_0 \in \{1, ..., n\}$. At the same time, $ab \in \mathfrak{q}_{i_0}$ and \mathfrak{q}_{i_0} is primary, so that $a^k \in \mathfrak{q}_{i_0}$, for some $k \in \mathbb{N}$. Thus $a \in \operatorname{rad} \mathfrak{q}_{i_0} = \mathfrak{p}$. But we have already shown that $\mathfrak{p} = \operatorname{rad} \mathfrak{q}$, so that $a^m \in \mathfrak{q}$ for some $m \in \mathbb{N}$. This proves that \mathfrak{q} is primary.

Definition 2.23. Let R be a ring, let $\mathfrak{a} \triangleleft R$ be a proper ideal and let

$$\mathfrak{a} = \mathfrak{q}_1 \cap \ldots \cap \mathfrak{q}_n$$

be a primary decomposition of ${\mathfrak a}.\ {\it If}$

$$\mathfrak{q}_j \not\supseteq igcap_{i
eq j} \mathfrak{q}_i$$

and

rad
$$\mathbf{q}_i \neq \operatorname{rad} \mathbf{q}_j$$
 for $i \neq j$,

then the primary decomposition $\mathfrak{a} = \mathfrak{q}_1 \cap ... \cap \mathfrak{q}_n$ is called *minimal*.

Theorem 2.24. (Noether-Lasker) Let R be a Noetherian ring, let $\mathfrak{a} \triangleleft R$ be a proper ideal. Then \mathfrak{q} has a minimal primary decomposition and the prime ideals $\mathfrak{p}_i = \operatorname{rad} \mathfrak{q}_i$ are uniquely determined up to the order.