
2 Primary decomposition.

2.1 Primary decomposition.

Remark 2.1. Consider the ring Z and an element n ∈Z. Then there exist uniquely determined
prime numbers p1, ..., pm and exponents k1, ..., km∈N such that

n=±p1k1 · ... · pmkm

or, equivalently:

(n)= (p1
k1) · ... · (pmkm)= (p1

k1)∩ ...∩ (pmkm).

Definition 2.2. Let R be any ring. An ideal q!R is called primary, if q=/ R and for all a, b∈R

ab∈ q∧ b∈/ q⇒∃n∈N an∈ q.

Example 2.3.

1. Every prime ideal is primary.

2. An ideal in Z generated by a power of a prime number is primary.

3. Let R be a principal ideal domain. Then q is primary if and only if q=pn, for a prime ideal p.

Proof. 1. and 2. are obvious. In order to show 3., assume that q= pn. As R is a PID, it follows
that p=(p), for some prime element p∈R. Consequently, q=(p)n=(pn). Say a·b∈ q=(pn) with
b∈/ q=(pn), for some a, b∈R. Then pn|a·b and pn ! b. As a PID, R is a unique factorization domain,
so that it follows p| a, and, consequently, pn| a, that is an∈ q.

Conversely, assume that q is primary. Let q= (c), for some c ∈R. Suppose that c=/ u·pn, for all
units u∈U(R), all prime elements p∈R, and all n∈N. Then, by unique factorization, c is divisible
by two different prime elements, say p and q. Let c= a·b with p| a and q| b. Then c| a·b and c ! b,
but also c ! an, for all n∈N, which means that q=(c) is not primary – a contradiction. "

Lemma 2.4. Let R be a ring, let q ! R be a proper ideal in R. The following conditions are
equivalent:

i. q is primary,

ii. every zero divisor in R/q is nilpotent,

iii. the zero ideal in R/q is primary.

Proof. It suffices to notice that q being primary is equivalent to the following condition in R/q:

(a+ q)·(b+ q)= q∧ a+ q=/ q⇒∃n∈N (a+ q)n= q. "

Example 2.5. The ideal (x, y2)! k[x, y], where k is any field, is primary, but is not a power of
a prime ideal.
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Proof. Observe that every polynomial f(x, y)∈ k[x, y] can be written as

f(x, y)=x·g(x, y)+h(y) =x·g(x, y)+ y2·h1(y) + a·y+ b,

with g(x, y)∈ k[x, y], h(y), h1(y)∈ k[y] and a, b∈ k. It then follows that the map

k[x, y]/q→ k[y]/(y2), f(x, y)+ q '→ a·y+ b+(y2)

is a well-defined ring isomorphism, so that k[x, y]/q=∼ k[y]/(y2).

In order to show that q is primary, we note that k[y] is a PID, and y is a prime element of k[y],
so that, by Example 2.3.3 the ideal (y2) is primary. Thus, by Lemma 2.4.iii, the zero ideal in the
ring k[y] / (y2) is primary, and so is the zero ideal in the isomorphic ring k[x, y] /q, leading to q
being primary.

We proceed to show that q is not a power of a prime ideal. Firstly, q is not prime itself, as the
ring k[x, y] / q is not a domain: the isomorphic ring k[y] / (y2) has zero divisors, for example
(y+(y2))2=(y2). Secondly, suppose that q= pn, for some prime ideal p! k[x, y]. Since

(x, y2) = q= pn⊆ p,

it follows that x, y2∈p. As p is prime, also y∈p. Consequently, (x, y)⊆p, but as (x, y) is maximal,
it follows (x, y)= p. Thus q= pn=(x, y)n. On the other hand

(x, y)2" q" (x, y),

which yields a contradiction. "

Definition 2.6. Let R be a ring. An ideal n!R, 0=/ n is irreducible if, for all a, b!R

n= a∩ b⇒ n= a∨ n= b.

Example 2.7.

1. Every maximal ideal is irreducible.

2. Every prime ideal is irreducible.

3. An ideal n!R is irreducible if and only if the zero ideal in R/n is irreducible.

Proof. 1. is obvious. For the proof of 2., suppose that p is a prime ideal of a ring R such that
p= a∩ b, for some a, b!R, with p" a and p" b. Then there exist a∈ a \ p and b∈ b \ p. Clearly
a·b∈ p implying a∈ a or b∈ p, which yields a contradiction.

In order to show 3., assume that n is an irreducible ideal of a ring R. Let

(n)=A∩B,

for some ideals A, B ! R / n. Let a = κ−1(A) and b = κ−1(B), where κ denotes the canonical
epimorphism κ:R→R/n, a '→'→'→'→'→'→'→'→'→'→κ a+ n. Then

n=κ−1((n))=κ−1(A)∩ κ−1(B)= a∩ b.

As n is irreducible, either n= a or n= b, which leads to (n)=A or (n)=B.
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Conversely, assume that (n) is an irreducible ideal in R/n. Let

n= a∩ b,

for some ideals a, b!R. Let A=κ(a) and B=κ(b). Then

(n) =κ(n)=κ(a∩ b)=κ(a)∩ κ(b)=A∩B;

indeed, clearly κ(a∩b)⊂κ(a)∩κ(b), and for the other inclusion fix y∈κ(a)∩κ(b). Thus y=κ(a),
for some a ∈ a, and y = κ(b), for some b ∈ b. Hence a − b ∈ ker κ= n, so that a= b+ n, for some
n∈ n, but as n⊆ b, this yields a∈ b and, consequently, a∈ a∩ b.

Now, by irreducibility of (n), we either get (n)=A, leading to n=a, or (n)=B, leading to n=b. "

Lemma 2.8. Let R be Noetherian. Every irreducible ideal in R is primary.

Proof. Let n be an irreducible ideal in a Noetherian ring R. By Lemma 2.4.2 it suffices to show
that in the ring A/n every zero divisor is nilpotent. Let x̄, ȳ∈R/n be such that x̄ȳ=0̄ with ȳ=/ 0̄.
For t̄ ∈R/n let

Ann t̄ = {z̄ ∈R/n| z̄t̄ =0}.

One easily checks that Ann t̄!R/n, and thus

Ann x̄⊆Ann x̄2⊆ ...⊆Ann x̄n⊆ ...

is an ascending chain of ideals. Since R is Noetherian, so is R/n, and hence there exists n∈N such
that

Ann x̄n=Ann x̄n+1= ....

We claim that (x̄n) ∩ (ȳ) = (0̄). Indeed, let ā ∈ (x̄n) ∩ (ȳ). Then ā= b̄ x̄n and ā= c̄ ȳ, for some b̄ ,
c̄ ∈R/n. Hence

b̄x̄n+1= b̄x̄nx̄= āx̄= c̄ȳx̄= c̄0̄ = 0̄,

so that b̄ ∈Ann x̄n+1=Ann x̄n and, consequently, ā= b̄x̄n= 0̄. This proves the claim.

By Example 2.7.3 the zero ideal of R/n is irreducible. Thus, by the above claim, (x̄n) = (0̄), as
ȳ ∈ (ȳ) and ȳ=/ 0̄. Therefore x̄n= 0̄, that is x̄ is nilpotent. "

Lemma 2.9. Let R be Noetherian, let a!R be a proper ideal. Then a is an intersection of a finite
number of irreducible ideals.

Proof. Suppose that there exists a nonempty familyR of proper ideals that are not intersections of
finite numbers of irreducible ideals. SinceR is Noetherian, the familyR contains a maximal element
c. In particular, c is not irreducible. Let a, b∈R with a, b∈/ c and let a= c+(a) and b= c+(b). Then

c= a∩ b, c" a, c" b,

which means that a, b ∈/ R. Thus both a and b are intersections of finite numbers of irreducible
ideals, and so is c – a contradiction. "

Theorem 2.10. Let R be Noetherian, let a!R be a proper ideal. Then a is an intersection of a
finite number of primary ideals.

5



Proof. By Lemma 2.9 every ideal is an intersection of a finite number of irreducible ideals, and
by Lemma 2.8 every irreducible ideal in R is primary. "

2.2 Radical of an ideal.

Definition 2.11. Let R be a ring, let a!R. The radical of the ideal a is defined to be

rad a= {r ∈R| ∃n∈Nrn∈ a}.

Remark 2.12. Let R be a ring, let a!R. Then rad a is an ideal.

Proof. Fix a, b∈ rad a. Then an∈ a and bm∈ a, for some n,m∈N. But then

(a− b)n+m−1 = anam−1+
(n+m− 1

1

)
anam−1b+ ...+

(n+m− 1
m− 1

)
anbm−1

+
(n+m− 1

m

)
an−1bm+

(n+m− 1
m+1

)
an−2bmb+ ...+ bn−1bm∈ a,

which means a− b∈ rad a. Moreover, if r ∈R, then

(ra)n= rnan∈ a,

that is ra∈ rad a. "

Remark 2.13. Let R be a ring, let a, b!R.

1. a⊆ rad a,

2. a⊆ b⇒ rad a⊆ rad b,

3. rad (rad a)= rad a,

4. rad a·b= rad a∩ b,

5. rad a∩ b= rad a∩ rad b,

6. rad a=(1)⇔ a=(1),

7. rad a+ b= rad(rad a+ rad b),

8. a+ b=(1)⇔ rad a+ rad b=(1).

Proof. 1. and 2. follow directly from the definiton of a radical.

For the proof of 3., fix a∈ rad(rad a). Then an∈ rad a, for some n∈N. But then anm=(an)m∈ a,
for some m∈N, that is a∈ rad a.

In order to prove 4., as a·b ⊆ a ∩ b, in view of 2. also rad a·b ⊆ rad a ∩ rad b and it suffices to
show the other inclusion. Fix a ∈ rad a ∩ b. Thus an ∈ a ∩ b, for some n ∈N, and, consequently,
a2n= anan∈ a·b.

To show 5., since a∩b⊆a and a∩b⊆b, by 2. rada∩b⊆ rada and rada∩b⊆ radb, so it suffices to
show the other inclusion. Fix a∈ rad a∩ rad b. Then an∈ a and am∈ b, for some n,m∈N. Hence
an+m= anam∈ a∩ b, so that a∈ rad a∩ b.

6. is clear, since 1∈ rad a⇔ 1= 1n∈ a.
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To show 6. notice that, as a+b=(a∪b)⊆ (rad a∪ radb)= rada+ radb, one inclusion follows from
2., and it suffices to justify the other one. Fix a ∈ rad(rad a+ rad b). Then an ∈ rad a+ rad b, for
some n∈N. Hence an= b+ c with b∈ rad a and c∈ radb, that is bk∈a and cl∈b, for some k, l∈N.
Therefore an(k+l)= (an)k+l= (b+ c)k+l= bkx+ cly, for some x, y ∈R, that is an(k+l)∈ a+ b and,
as a result, a∈ rad(a+ b).

Finally, for the proof of 7. firstly observe, that if 1 ∈ a + b then, by 1. also 1 ∈ rad a + rad b.
Conversely, if 1∈ rad a+ rad b then, by 1. and 7., 1∈ rad(rad a+ rad b)= rad a+ rad b. Therefore,
by 6., 1∈ a+ b. "

Remark 2.14. Let R be a ring, let p!R be a prime ideal, let m∈N. Then rad pm= p.

Proof. Fix a ∈ rad pm. Then an ∈ pm, for some n ∈N, and since p⊇ p2⊇ ...⊇ pm it follows that
an∈ p. But as p is a prime ideal, this implies a∈ p.

Conversely, fix a∈ p. Then am∈ pm, so that a∈ rad p. "

Definition 2.15. Let R be a ring. The set of all nilpotent elements of R:

NilR= {a∈R| ∃n∈Nan=0}

is called the nilradical of R.

Remark 2.16. Let R be a ring. Then NilR!R.

Proof. Let a, b∈NilR. Then an=0 and bm=0, for some n,m∈N. Consequently

(a+ b)n+m = anam+
(n+m

1

)
anam−1b+ ...+

(n+m
m

)
anbm

+
(
n+m
m+1

)
an−1bmb+ ...+ bnbm

= 0,

so that a+ b∈NilR. Clearly, for r ∈R, also (ra)n= rnan=0, hence ra∈NilR. "

Proposition 2.17. Let R be a ring. Then

NilR=
⋂
{p| p∈ SpecR}.

Proof. Denote A=
⋂
{p| p∈SpecR}. Fix a∈NilR, and in order to show that a∈A, fix a prime

ideal p!R. As an=0, for some n∈N, this implies that an=an−1a=0∈p. Since p is prime, either
a∈ p, or an−1∈ p – in the latter case a simple inductive argument follows.

For the other inclusion fix a∈R and assume a∈/ NilR. Thus an=/ 0, for all n∈N. Let

R= {a!R| an∈/ a, for all n∈N}.

By our assumption, (0)∈R. One also easily verifies that if L is a chain of ideals from L, then also⋃
L∈R. Thus, by Zorn’s Lemma, the family R has a maximal element p.

We shall show that p is a prime ideal. Fix x, y ∈R and assume that both x∈/ p and y ∈/ p. Then

p" p+(x) and p" p+(y),
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which, by the maximality of p, means that p+(x), p+(y)∈/R, that is, for some n,m∈N:

an∈ p+(x) and am∈ p+(y).

But then

an+m∈ (p+(x))·(p+(y))= p2+ p·(x) + p·(y)+ (xy).

Since p2+p·(x)+ p·(y)⊆ p this means an+m∈p+(xy). Therefore p+(xy)∈/R, and, in particular,
xy∈/ p (for otherwise p+(xy) = p∈R). This proves that p is prime.

Now, an∈/ p, for all n∈N, and, in particular, a∈/ p. This means a∈/ A. "

Remark 2.18. Let R be a ring, let a!R. If rad a is a maximal ideal, then a is primary.

Proof. Let m= rada be a maximal ideal and let κ:R→R/a be the canonical epimorphism. Then,
for a∈R and n∈N:

(a+ a)n= 0̄∈R/a⇔ an∈ a⇔ a∈m,

that is κ(m) equals the nilradical of R / a. Since Nil R / a =
⋂
{P| P ∈ Spec R / a}, it follows

that κ−1(P)!R and m⊆ κ−1(P), for P ∈ SpecR/a. But, as m is maximal, this, in fact, means
m = κ−1(P), for P ∈ Spec R/a. Hence R/a contains exactly one prime ideal, which is equal to
Nil R / a. Consequently, R / a contains only one maximal ideal, namely R / a. Therefore every
element of R/a outside NilR/a is a unit, for otherwise it would be contained in one of the maximal
ideals of R/a. Thus every zero divisor of R/a has to be nilpotent, and by Lemma 2.4.ii the ideal
a is primary. "

Lemma 2.19. Let R be a ring, let q!R be a primary ideal. Then rad q is prime.

Proof. Let a, b∈R and assume that ab∈ rad q. Thus anbn=(ab)n∈ q. If an∈ q then a∈ rad q. If
an∈/ q, then, as q is primary, bnm=(bn)m∈ q, for some m∈N. But then b∈ rad q. "

Definition 2.20. Let R be a ring, let q!R be a primary ideal and let p= radq. Then q is called
p-primary.

Remark 2.21. Let R be a ring, let m!R be a maximal ideal, let m∈N. Then mm is m-primary.

Proof. Let m!R be a maximal ideal and let m∈N. Then m is also prime, and by Remark 2.14
radmm=m is a maximal ideal. But then, by Remark 2.18, it is primary. "

Lemma 2.22. Let R be a ring, let q1, ..., qn be p-primary. Then q1∩ ...∩ qn is p-primary.

Proof. Let q1, ..., qn be p-primary and denote q= q1∩ ...∩ qn. By Remark 2.13.5

rad q= rad q1∩ ...∩ qn= rad q1∩ ...∩ rad qn= p∩ ...∩ p= p,

and it remains to show that q is primary. Let a, b∈R and assume ab∈ q with b∈/ q. In particular,
b ∈/ qi0 for some i0 ∈ {1, ..., n}. At the same time, ab ∈ qi0 and qi0 is primary, so that ak ∈ qi0, for
some k∈N. Thus a∈ radqi0=p. But we have already shown that p= radq, so that am∈q for some
m∈N. This proves that q is primary. "

8



Definition 2.23. Let R be a ring, let a!R be a proper ideal and let

a= q1∩ ...∩ qn

be a primary decomposition of a. If

qj #
⋂

i=/ j

qi

and

rad qi=/ rad qj for i=/ j ,

then the primary decomposition a= q1∩ ...∩ qn is called minimal.
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Theorem 2.24. (Noether-Lasker) Let R be a Noetherian ring, let a!R be a proper ideal. Then
q has a minimal primary decomposition and the prime ideals pi= rad qi are uniquely determined
up to the order.
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