1 Noetherian rings.

1.1 Noetherian rings.

Theorem 1.1. Let R be a ring. The following conditions are quivalent:

(FG). ^{1.1} Every ideal of the ring R is finitely generated.

(ACC). ^{1.2} Every ascending chain of ideals in R is finite.

(MAX). Every nonempty family of ideals of the ring R has a maximal element.

Proof. $(FG) \Rightarrow (ACC)$: Let $I_1 \subsetneq I_2 \subsetneq ...$ be an ascending chain of ideals in R. Let $J = \bigcup_{i=1}^{\infty} I_i$. Then $J \lhd R$ and, by (FG), $J = (a_1, ..., a_n)$. Thus for every $k \in \{1, ..., n\}$ there exists I_{i_k} such that $a_k \in I_{i_k}$. Let $m = \max\{i_k | k \in \{1, ..., n\}\}$. Then $a_1, ..., a_n \in I_m$, so that $J = (a_1, ..., a_n) \subset I_m$. On the other hand $I_m \subset \bigcup_{i=1}^{\infty} I_i = J$, and hence $J = I_m$. Moreover

$$J = I_m \subset I_{m+1} \subset I_{m+2} \subset \ldots \subset \bigcup_{i=1}^{\infty} I_i = J,$$

so $I_l = I_m = J$, for l > m.

 $(ACC) \Rightarrow (MAX)$: Let $\mathcal{R} \neq \emptyset$ be a nonempty family of ideals of the ring \mathcal{R} . Fix $I_1 \in \mathcal{R}$. If I_1 is not maximal in \mathcal{R} , then there is $I_2 \in \mathcal{R}$ such that $I_1 \subsetneq I_2$. If I_2 is not maximal in \mathcal{R} , then there is $I_3 \in \mathcal{R}$ such that $I_2 \subsetneq I_3$. Continuing that way, had we not came across an ideal maximal in \mathcal{R} , we would eventually build an infitte ascending chain of ideals $I_1 \subsetneq I_2 \subsetneq \dots$, contrary to (ACC).

 $(MAX) \Rightarrow (FG)$: Let $J \triangleleft R$. Fix $a_1 \in J$. If $(a_1) \neq J$, then there is an $a_2 \in J \setminus (a_1)$. If $(a_1, a_2) \neq J$, then there is an $a_3 \in J \setminus \{a_1, a_2\}$. Continuing that way, we eventually obtain a family $\mathcal{R} = \{(a_1, ..., a_t) | (a_1, ..., a_t) \subset J, t \in \mathbb{N}\}$. By (MAX), \mathcal{R} contains a maximal element $(a_1, ..., a_r)$, so that every element $a \in J$ belongs to $(a_1, ..., a_r)$. Hence $J = (a_1, ..., a_r)$.

Definition 1.2. Let R be a ring. If one (and hence every) condition of Theorem 1.1 is satisfied, then R is called a **noetherian ring**.

Lemma 1.3. Let R and S be rings and let R be noetherian. Let $\varphi: R \to S$ be an epimorphism. Then S is noetherian.

Proof. Let $J \triangleleft S$. Then $\varphi^{-1}(J) \triangleleft R$ is finitely generated, $\varphi^{-1}(J) = (a_1, ..., a_n)$. As φ is an epimorphism, $J = \varphi \circ \varphi^{-1}(J) = \varphi((a_1, ..., a_n)) = (\varphi(a_1), ..., \varphi(a_n))$ is finitely generated. \Box

Corollary 1.4. Let R be noetherian, let $I \triangleleft R$. Then R/I is noetherian.

Proof. R/I is a surjective image of R via the canonical epimorphism $\kappa: R \to R/I$.

1.2 Hilbert basis theorem.

Theorem 1.5. (Hilbert basis theorem) Let R be noetherian. Then R[x] is noetherian.

^{1.1.} finitely generated

^{1.2.} ascending chain condition

Proof. We shall show that R[x] satisfies (**FG**). For that purpose, fix an $I \triangleleft R[x]$. As I can be decomposed into the union of sets consisting of polynomials of fixed degrees, let

$$I_i = \{a \in R \mid \exists_{a_0, \dots, a_{i-i} \in R} a x^i + a_{i-1} x^{i-1} + \dots + a_1 x + a_0 \in I\} \cup \{0\}, i \in \mathbb{N}.$$

One easily checks that $I_i \triangleleft R$. Observe that $I_i \subseteq I_{i+1}$, for $i \in \mathbb{N}$. Indeed, fix an $i \in \mathbb{N}$. If $f = ax^i + a_{i-1}x^{i-1} + \ldots + a_1x + a_0 \in I$ and $a \in I_i$, then $xf = ax^{i+1} + a_{i-1}x^i + \ldots + a_1x^2 + a_0x \in I$ and hence $a \in I_{i+1}$.

Since R is noetherian, by (ACC) there exists a $r \in \mathbb{N}$ such that $I_r = I_{r+1} = \dots$. By (FG):

$$I_0 = (a_{01}, ..., a_{0n})$$

$$I_1 = (a_{11}, ..., a_{1n})$$

$$\vdots$$

$$I_r = (a_{r1}, ..., a_{rn}),$$

where, for the sake of simplicity, we allow some of the a_{ij} to be 0. Let

$$f_{ij} = a_{ij}x^i + a_{i-1}^{(ij)}x^{i-1} + \dots + a_1^{(ij)}x + a_0^{(ij)} \in I.$$

It suffices to show that $I = (f_{01}, ..., f_{0n}, f_{11}, ..., f_{1n}, ..., f_{r1}, ..., f_{rn})$. The inclusion (\supset) is obvious, and for the other one denote $J = (f_{01}, ..., f_{0n}, f_{11}, ..., f_{1n}, ..., f_{r1}, ..., f_{rn})$. Fix $f \in I$ and let deg f = d. We shall proceed by induction on d. If d = 0, then f = a, for some $a \in R$, so that $f \in (f_{01}, ..., f_{0n})$.

For $d \ge 1$, assume that for all polynomials $g \in I$ of degree less than $d, g \in J$. If $r \ge d$, then there are $e_1, \ldots, e_n \in R$ such that

$$h = f - (e_1 f_{d1} + \dots + e_n f_{dn}) \in I$$

and deg h < d. Therefore $h \in J$ and $f \in J$.

If r < d, then deg $x^{d-r}f_{r1} = ... = \deg x^{d-r}f_{rn} = d$ and the ideal I_r is being generated by the leading coefficients of these polynomials. Since $I_r = I_d$ and the leading coefficient of f belongs to I_d , it is a linear combination of the generators of I_r . Thus there are $c_1, ..., c_n \in R$ such that

$$g = f - (c_1 x^{d-r} f_{r1} + \dots + c_n x^{d-r} f_{rn}) \in I$$

and deg g < d. Therefore $g \in J$ and $f \in J$.

Corollary 1.6. Let R be noetherian. Then $R[x_1, ..., x_n]$ is noetherian.