1 Noetherian rings.
1.1 Noetherian rings.

Theorem 1.1. Let R be a ring. The following conditions are quivalent:
(FG). 1! Every ideal of the ring R is finitely generated.
(ACC). 2 Every ascending chain of ideals in R is finite.

(MAX). Every nonempty family of ideals of the ring R has a maximal element.

Proof. (FG)=(ACC): Let I; CI,C ... be an ascending chain of ideals in R. Let J=J;- L.
Then J < R and, by (FG), J=(as,...,a,). Thus for every k € {1,...,n} there exists I;, such that
ag € I;,. Let m=max {ig|k€{1,...,n}}. Then ay,...,an € Iy, so that J = (a,...,an) C L. On the
other hand I, C Uji1 I,=J, and hence J = I,,,. Moreover

J=1nClnt1Clpy2C...C U Li=J,
i=1
so ;=1,=J, for [ >m.

(ACC)= (MAX):Let R+ be a nonempty family of ideals of the ring R. Fix [; € R. If I1 is
not maximal in R, then there is I € R such that Iy C I. If I5 is not maximal in R, then there is
I3 € R such that I, C Is. Continuing that way, had we not came across an ideal maximal in R, we
would eventually build an infitite ascending chain of ideals Iy C I> C ..., contrary to (ACC).

(MAX) = (FG): Let J < R. Fix a; € J. If (a1) # J, then there is an az € J \ (a1). If
(a1,a2) # J, then there is an ag € J \ {a1,a2}. Continuing that way, we eventually obtain a family
R={(a1,...,as)| (a1,...,at) CJ,t e N}. By (M AX), R contains a maximal element (a1, ..., ar), so
that every element a € J belongs to (ay, ...,a,). Hence J=(aq,...,a,). O

Definition 1.2. Let R be a ring. If one (and hence every) condition of Theorem 1.1 is satisfied,
then R is called a noetherian ring.

Lemma 1.3. Let R and S be rings and let R be noetherian. Let p: R — S be an epimorphism.
Then S is noetherian.

Proof. Let J <« S. Then ¢~ !(J) < R is finitely generated, ¢~1(J) = (a1, ..., a,). As ¢ is an
epimorphism, J = o o~ 1(J)=p((ai,...,an)) = (p(a1), ..., p(ay)) is finitely generated. O

Corollary 1.4. Let R be noetherian, let I <R. Then R/I is noetherian.
Proof. R/I is a surjective image of R via the canonical epimorphism x: R— R/I. |
1.2 Hilbert basis theorem.

Theorem 1.5. (Hilbert basis theorem) Let R be noetherian. Then R|x] is noetherian.

1.1. finitely generated

1.2. ascending chain condition



Proof. We shall shwo that R[z] satisfies (F'G). For that purpose, fix an I < R[x]. As I can be
decomposed into the union of sets consisting of polynomials of fixed degrees, let

Li={a€R|3u,,. a0 _;erari+a;_12" '+ . +ajz+aoel}U{0},ieN.
One easily checks that I; <« R. Observe that I; C I;;1, for ¢ € N. Indeed, fix an ¢ € N. If

f=ar'+ai_ 12" '+ ... +ax+agel and a€l;, then z f=ax’ T +a;_12' + ... +ax® +apx €
and hence a € I; 1.

Since R is noetherian, by (ACC) there exists a » € N such that I, =1I,41=... . By (FG):
IO == (a()la ceey aOn)
I = (a11,...,a1n)
I, = (Gr1y..s Qrp),

where, for the sake of simplicity, we allow some of the a;; to be 0. Let
fij:aijac"'—i—az(-ij%ac"'_l +.. +a§ij)x+aéij) cl.

It suffices to show that I = (fo1, ..., fons J115 «s fins -+ fr1, -+ Jrn). The inclusion (D) is obvious,
and for the other one denote J = (fo1, .-+, fon, f115--+s fin, --er fr1y ooy frn). Fix f €1 and let deg f=d.
We shall proceed by induction on d. If d=0, then f=a, for some a € R, so that f € (fo1,..., fon)-

For d > 1, assume that for all polynomials g € I of degree less than d, g € J. If r > d, then there
are ey, ..., e,€R such that

h=f—(eifan+..+enfan) el

and deg h < d. Therefore he€ J and fe€J.

If » <d, then degx?~"f.1 =...=deg 2~ " f,.,=d and the ideal I, is being generated by the leading
coefficients of these polynomials. Since I, = I and the leading coefficient of f belongs to Iy, it is
a linear combination of the generators of I,.. Thus there are ¢y, ..., ¢, € R such that

g= f - (Clxd_rf'rl +...+ Cn-rd_Tf'rn) el

and deg g <d. Therefore g€ J and f € J. a

Corollary 1.6. Let R be noetherian. Then R[x1,...,xy] is noetherian.
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