
1 Noetherian rings.

1.1 Noetherian rings.

Theorem 1.1. Let R be a ring. The following conditions are quivalent:

(FG). 1.1 Every ideal of the ring R is �nitely generated.

(ACC). 1.2 Every ascending chain of ideals in R is �nite.

(MAX). Every nonempty family of ideals of the ring R has a maximal element.

Proof. (FG)) (ACC): Let I1( I2( ::: be an ascending chain of ideals in R. Let J =
S
i=1
1

Ii.
Then J CR and, by (FG), J =(a1; :::; an). Thus for every k 2f1; :::; ng there exists Iik such that
ak2 Iik. Let m=max fikj k 2f1; :::; ngg. Then a1; :::; an2 Im, so that J =(a1; :::; an)� Im. On the
other hand Im�

S
i=1
1

Ii=J , and hence J = Im. Moreover

J = Im� Im+1� Im+2� :::�
[
i=1

1

Ii=J ;

so Il= Im=J , for l >m.

(ACC)) (MAX):Let R=/ ; be a nonempty family of ideals of the ring R. Fix I12R. If I1 is
not maximal in R, then there is I22R such that I1( I2. If I2 is not maximal in R, then there is
I32R such that I2( I3. Continuing that way, had we not came across an ideal maximal in R, we
would eventually build an in�tite ascending chain of ideals I1( I2( :::, contrary to (ACC).

(MAX) ) (FG): Let J C R. Fix a1 2 J . If (a1) =/ J , then there is an a2 2 J n (a1). If
(a1; a2)=/ J , then there is an a32J n fa1; a2g. Continuing that way, we eventually obtain a family
R=f(a1; :::; at)j (a1; :::; at)�J ; t2Ng. By (MAX), R contains a maximal element (a1; :::; ar), so
that every element a2 J belongs to (a1; :::; ar). Hence J =(a1; :::; ar). �

De�nition 1.2. Let R be a ring. If one (and hence every) condition of Theorem 1.1 is satis�ed,
then R is called a noetherian ring.

Lemma 1.3. Let R and S be rings and let R be noetherian. Let ': R! S be an epimorphism.
Then S is noetherian.

Proof. Let J C S. Then '¡1(J) C R is �nitely generated, '¡1(J) = (a1; :::; an). As ' is an
epimorphism, J = '� '¡1(J)= '((a1; :::; an)) = ('(a1); :::; '(an)) is �nitely generated. �

Corollary 1.4. Let R be noetherian, let I CR. Then R/I is noetherian.

Proof. R/I is a surjective image of R via the canonical epimorphism �:R!R/I. �

1.2 Hilbert basis theorem.

Theorem 1.5. (Hilbert basis theorem) Let R be noetherian. Then R[x] is noetherian.

1.1. �nitely generated
1.2. ascending chain condition

1



Proof. We shall shwo that R[x] satis�es (FG). For that purpose, �x an I C R[x]. As I can be
decomposed into the union of sets consisting of polynomials of �xed degrees, let

Ii= fa2Rj 9a0;:::;ai¡i2Raxi+ ai¡1x
i¡1+ :::+ a1x+ a02 Ig[ f0g; i2N:

One easily checks that Ii C R. Observe that Ii � Ii+1, for i 2 N. Indeed, �x an i 2 N. If
f = axi+ ai¡1x

i¡1+ :::+ a1x+ a02 I and a 2 Ii, then xf = axi+1+ ai¡1x
i+ :::+ a1x

2+ a0x2 I
and hence a2 Ii+1.

Since R is noetherian, by (ACC) there exists a r2N such that Ir= Ir+1= ::: . By (FG):

I0 = (a01; :::; a0n)

I1 = (a11; :::; a1n)
���

Ir = (ar1; :::; arn);

where, for the sake of simplicity, we allow some of the aij to be 0. Let

fij= aijx
i+ ai¡1

(ij)xi¡1+ :::+ a1
(ij)x+ a0

(ij)2 I:

It su�ces to show that I = (f01; :::; f0n; f11; :::; f1n; :::; fr1; :::; frn). The inclusion (�) is obvious,
and for the other one denote J=(f01; :::; f0n; f11; :::; f1n; :::; fr1; :::; frn). Fix f 2I and let deg f=d.
We shall proceed by induction on d. If d=0, then f = a, for some a2R, so that f 2 (f01; :::; f0n).

For d> 1, assume that for all polynomials g 2 I of degree less than d, g 2 J . If r> d, then there
are e1; :::; en2R such that

h= f ¡ (e1fd1+ :::+ enfdn)2 I

and deg h<d. Therefore h2 J and f 2 J .

If r <d, then degxd¡rfr1= :::=deg xd¡rfrn= d and the ideal Ir is being generated by the leading
coe�cients of these polynomials. Since Ir= Id and the leading coe�cient of f belongs to Id, it is
a linear combination of the generators of Ir. Thus there are c1; :::; cn2R such that

g= f ¡ (c1xd¡rfr1+ :::+ cnx
d¡rfrn)2 I

and deg g <d. Therefore g 2J and f 2J . �

Corollary 1.6. Let R be noetherian. Then R[x1; :::; xn] is noetherian.
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