1. PROBLEM SET 1: MODULES, SUBMODULES, SUBMODULES GENERATED BY SETS.

- (1) Let R be a ring, M a left R-module, $\mathcal{R} = \{N_i : i \in I\}$ a family of submodules of M. Show that: (a) $\bigcap_{i \in I} N_i$ is a submodule of M,
 - (b) $\bigcup_{i \in I} N_i$ is a submodue of M if \mathcal{R} is a chain.
 - If $\bigcup_{i \in I} N_i$ is a submodue of M, is \mathcal{R} necessarily a chain?
- (2) Let \overline{R} be a ring, M a left R-module, let $S \subset M$. Show that:

 $\langle S \rangle = \{ a_1 s_1 + \ldots + a_n s_n + b_1 t_1 + \ldots + b_m t_m : a_i \in R, s_i \in S, b_j \in \mathbb{Z}, t_j \in S \}.$

(3) Let R be a ring, M a left R-module, let $N_1, N_2 < M$. Show that

 $\langle N_1 \cup N_2 \rangle = \{ n_1 + n_2 : n_1 \in N_1, n_2 \in N_2 \}.$

- (4) Give an example of a finitely generated module, which is not a finitely generated Abelian group.
- (5) Let R and S be rings, let $\phi : R \to S$ be a ring homomorphism. Show that every S-module M is also an R-module by defining rm, $r \ inR$, $m \in M$ as $\phi(r)m$.
- (6) Let R be a ring, $I \triangleleft R$ a two-sided ideal, M a left R-module. Show that M/IM is a R/I-module with (r+I)(a+IA) = ra + IA.

Homework: Problems 3,4,6 are to be handed in during the next class.