Problem set 20: double integrals.

- (1)Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the paraboloid $z = 64 - 2x^2 - 2y^2$. Divide R into four equal squares and choose the sample points to be the upper right corners of each subsquare.
- Let $R = \{(x, y) : -1 \le x \le 1, -1 \le y \le 1\}$. Evaluate (2)

$$\iint_R \sqrt{1-y^2} \, dA.$$

Assume that f(x,y) = C, where C is some real constant. Suppose that R =(3) $[a, b] \times [c, d]$ is a rectangle. Show that

$$\iint_R f(x,y) \, dA = C(b-a)(d-c).$$

- Evaluate the iterated integrals $\int_0^2 \int_0^1 x^2 y^2 \, dx \, dy$ and $\int_0^1 \int_0^2 x^2 y^2 \, dy \, dx$. Calculate $\iint_R x \sin(xy) \, dA$, where $R = [0, \pi] \times [1, 2]$. (4)
- (5)
- (6)Find the volume of the solid that lies under the plane 6x + 2y + z = 24 and above the rectangle $R = \{(x, y) : 0 \le x \le 1, 0 \le y \le 20\}.$
- Evaluate $\iint_{\Omega} (2x + 6y) dA$, where Ω is the region bounded by $y = 5x^2$ and (7) $y = 4 + x^2.$
- Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above (8)the region Ω bounded by the line y = 4x and $y = x^2$.
- Determine $\iint_{\Omega} x^2 y \, dA$ where Ω is the region bounded by y = x 2 and $y^2 = x + 4$. (9)
- (10)
- Evaluate the iterated integral $\int_0^1 \int_x^1 y \, dy \, dx$. Evaluate the iterated integral $\int_0^{\pi/2} \int_0^{\sin\theta} e^{\cos\theta} \, dr \, d\theta$. (11)
- Evaluate the integral $\iint_{\Omega} (3x+4y) dA$, where Ω is the region in the upper half-plane bounded by the circles $x^2 + y^2 = 2$ and $x^2 + y^2 = 3$. Compute $\iint_{\mathbb{R}^2} e^{-x^2-y^2} dA$. (12)
- (13)
- Find the volume of the solid bounded by the plane z = 2 and the paraboloid (14) $z = 3 - x^2 - y^2.$
- Let the curve $r = \cos(2\theta)$ be given in polar coordinates. The graph is a four-leaved (15)rose. What is the area of all four leaves together?
- (16)Suppose we are given a triangle Δ with corners (0,0), (1,0), and (0,1). We further assume that the density is given by $\rho(x, y) = 1 + 2x + 4y$. What is the mass of the triangle?
- Assume that two random variables X and Y are given. Show that (17)

$$f(x,y) = \begin{cases} 4xy, & \text{if } 0 \le x \le 1, \ 0 \le y \le 1, \\ 0, & \text{otherwise} \end{cases}$$

is a joint density. Then calculate $P(Y \leq \frac{1}{2})$ and $P(X \leq \frac{1}{4}, Y \geq \frac{1}{2})$.

Assume we are given a lamina occupying the region Ω and having density function (18) $\rho(x,y)$. If $(\overline{x},\overline{y})$ are the coordinates of the center of mass, then denoting the mass by m, we have

$$\overline{x} = \frac{1}{m} \iint_{\Omega} x \rho(x, y) \, dA,$$
$$\overline{y} = \frac{1}{m} \iint_{\Omega} y \rho(x, y) \, dA.$$

Assume that we are given a semicircular lamina whose radius is 1 and whose density is $\rho(x, y) = \sqrt{x^2 + y^2}$. What is the center of mass?

(19) The moment of inertia I_x of a lamina occupying the region Ω and having density function $\rho(x, y)$ about the x-axis is

$$I_x = \iint_{\Omega} y^2 \rho(x, y) \, dA$$

Similarly for the y-axis. The moment of inertia I_0 about the origin is

$$\iint_{\Omega} (x^2 + y^2) \rho(x, y) \, dA.$$

Suppose Ω is a disk centered around the origin with radius 1. Give the moments of inertia I_x , I_y , and I_0 if the density is constant.

(20) Let $f:(1,\infty)\times[0,2\pi]\to\mathbb{R}$ be defined by $f(x,y)=\frac{1}{x}\sin(y)$. Compute

$$\int_{1}^{\infty} \int_{0}^{2\pi} f(x,y) \, dy \, dx$$

What happens when considering

$$\int_0^{2\pi} \int_1^\infty f(x,y) \, dx \, dy?$$