Problem set 18: analysis in \mathbb{R}^n .

- (1) Give an example of two functions $f, g: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\lim_{x\to 0} f(x)$ and $\lim_{y\to f(0)} g(y)$ exist but $\lim_{x\to 0} g \circ f(x) \neq g(\lim_{x\to 0} f(x))$.
- (2) Give a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $\lim_{x\to 0} \lim_{y\to 0} f(x, y) \neq \lim_{y\to 0} \lim_{x\to 0} f(x, y)$.
- (3) Show that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \frac{x^2y}{x^4 + y^2}$$

for $(x, y) \neq (0, 0)$ and f(0, 0) = (0, 0) is not continuous.

- (4) Show that $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x) = \sin\left(\frac{1}{\|x\|}\right)$ for $x \neq 0$ and f(0) = 0 is not continuous.
- (5) Let (X, d_X) and (Y, d_Y) be metric space. Suppose that X is such that whenever it is contained in a family of open balls, then we can find a finite subfamily of this family that still covers X (that means that X is *compact*). Show that if $f: X \to Y$ is continuous, then it is also uniformly continuous.
- (6) Show that $f: (0, \infty) \to (0, \infty)$ defined by $f(x) = \frac{1}{x}$ is not uniformly continuous.
- (7) Make a contour plot of $f(x, y) = x^2 + y^2$.
- (8) Let (X, d_X) and (Y, d_Y) be metric spaces. Show that f is continuous at $x_0 \in X$ if and only if $\lim_{n\to\infty} f(x_n) = f(x_0)$ for all sequences $(x_n)_n$ with $\lim_{n\to\infty} x_n = x_0$.
- (9) Let (X, d_X) and (Y, d_Y) be metric spaces. Let $f: X \to Y$ be a map, $x_0 \in X$, and $y_0 \in Y$. Further, let $(x_n)_n$ be a sequence in X converging to x_0 . Suppose $(y_n)_n$ and $(z_n)_n$ are subsequences of $(x_n)_n$ such that $\bigcup_{n \in \mathbb{N}} \{y_n, z_n\} = \bigcup_{n \in \mathbb{N}} \{x_n\}$. Show that if $\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} f(z_n) = y_0$, then also $\lim_{n \to \infty} f(x_n) = y_0$.
- (10) Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$ a map. Suppose that $x_0 \in X$ and $A \subset X$ is such that $f|_{A \cup \{x_0\}}: A \cup \{x_0\} \to Y$ and $f|_{X \setminus A \cup \{x_0\}}: X \setminus A \cup \{x_0\} \to Y$ are continuous at x_0 (by $f|_B$ we mean the restriction of f to a set B, that is $f|_B$ is defined on B and $f|_B(x) = f(x)$ for all $x \in B$). Show that f is continuous at x_0 as well.
- (11) Give an example of two continuous functions $f, g: \mathbb{R}^2 \to \mathbb{R}$ and a point $x_0 \in \mathbb{R}^2$ such that f is continuous at x_0, g is not, but fg is.
- (12) Give a sequence of functions $(f_n)_n$, each $f_n: \mathbb{R}^2 \to \mathbb{R}$ is continuous, $f(x) := \lim_{n \to \infty} f_n(x)$ exists for all $x \in \mathbb{R}^2$, but f is not continuous.
- (13) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function with f(0) = 0 and f(1, 1) = 2. Is there some $x \in \mathbb{R}^2$ with f(x) = 1?
- (14) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be continuous with f(0) = 0 and $g: \mathbb{R}^2 \to \mathbb{R}$ be such that there is some $M \in \mathbb{R}$ with $|g(x)| \leq M$ for all $x \in \mathbb{R}^2$. Show that fg is continuous at 0.
- (15) Show that $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $\sqrt{x^2 + x^2} \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right)$ and f(0) = 0 is continuous at 0.
- (16) Give an example of a function $f: \mathbb{R}^2 \to \mathbb{R}$ that is continuous only at 0.
- (17) Let (X, d_X) be a metric space and $f: X \to \mathbb{R}^n$ be a map, where *n* is a positive natural number. Writing $f = \sum_{k=1}^n f_k \cdot e_k$, show that *f* is continuous if and only if each f_k is.
- (18) Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be linear. Show that it is continuous.
- (19) Let (X, d_X) and (Y, d_Y) be metric spaces. Assume that $(f_n)_n$ is a sequence of continuous functions $f_n: X \to Y$ such that $(f_n(x))_n$ converges to some number f(x) for each $x \in X$. We assume further that for all $\varepsilon > 0$ there is some $N \in \mathbb{N}$

such that $d_Y(f(x), f_n(x)) < \varepsilon$ for all $n \ge N$ and all $x \in X$. Show that f is continuous.

(20) Show that $f: \mathbb{R} \to \mathbb{R}$ defined by $\sum_{n=1}^{\infty} \frac{1}{2^n} \sin(x)$ is a continuous function.