Problem set 14: theorems about derivatives.

- (1)Assume that $f: \mathbb{R} \to \mathbb{R}$ is differentiable and $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} f(x)$. Show that there is some x with f'(x) = 0.
- Find a function $f: \mathbb{R} \to \mathbb{R}$ and distinct $x_1, x_2 \in \mathbb{R}$ such that $f(x_1) = f(x_2)$ but (2)there is no $x \in \mathbb{R}$ with f'(x) = 0.
- (3)Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable. Suppose that there is some $h \in \mathbb{R}$ such that f(x+h) = f(x) for all $x \in \mathbb{R}$. Show that there is some $x_0 \in \mathbb{R}$ with $f'(x_0) = 0$.
- Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin(x)$. Show that there is a point $x_* \in \mathbb{R}$ (4)such that $f''(x_*) = 0$.
- Find all local minima of $f: [0, \infty) \to \mathbb{R}$ defined as $f(x) = (x-3)^3 + 5$. (5)
- (6)Assume that $f:(a,b) \to \mathbb{R}$ is twice differentiable, where $a, b \in \mathbb{R}$ with a < b. Show that if f'' is constant 0, then $f(x) = \alpha x + \beta$ for some real α and β .
- Find a nonconstant function $f: \mathbb{R} \to \mathbb{R}$ that attains a local minimum in uncount-(7)able many points.
- (8)Assume that $f, g: \mathbb{R} \to \mathbb{R}$ are both convex. Is $g \circ f$ convex as well?
- Assume that $f, g: \mathbb{R} \to \mathbb{R}$ are both convex. Is fg convex as well? (9)
- (10)
- (11)
- (12)
- (13)
- (14)
- Assume that $J, g: \mathbb{K} \to \mathbb{K}$ are both convex. Is fg conv Compute $\lim_{x\to 0} \frac{e^x e^{-x}}{\sin(x)}$. Compute $\lim_{x\to 1^+} \frac{\log x}{\sqrt{x^2-1}}$. Compute $\lim_{x\to 0} \frac{3^x 2^x}{x}$. Compute $\lim_{x\to \frac{\pi}{2}} \frac{1 \sin(x) + \cos(x) + x \frac{\pi}{2}}{\sin(2x) \cos(x)}$. Compute $\lim_{x\to\infty} \frac{\log(\log(\log(y)))}{x}$. Compute $\lim_{x\to\infty} \frac{\log(\log(\log(y)))}{x}$. Compute $\lim_{x\to\infty} x^{1/x}$? Compute $\lim_{x\to\infty} x^{1/x}$? (15)
- (16)
- Compute $\lim_{x \to 1} \left(\frac{1}{\log x} \frac{x}{\log x} \right)$. (17)

(18) Calculate
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{1}{\sin(x)}\right)$$
.