Problem set 8: linear maps, matrices of linear maps, eigenvectors and eigenvalues, diagonalization.

(1) Which of the following maps $\varphi: K^n \to K^m$ are linear, if:

$$\begin{aligned} \text{(a)} & n = m = 3, \varphi \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x+z \\ 2x+z \\ 3x-y+z \end{bmatrix}; \text{(b)} & n = m = 3, \varphi \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x \\ y+1 \\ z+2 \end{bmatrix}; \\ \text{(c)} & n = m = 3, \varphi \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 2x+y \\ x+z \\ z \end{bmatrix}; \text{(d)} & n = m = 3, \varphi \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} x-y+z \\ 2x+3y+5z-t \\ x+z-t \end{bmatrix}; \\ \text{(f)} & n = 4, m = 3, \varphi \left(\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \right) = \begin{bmatrix} x-y+2t \\ 2x-3y+5z-t \\ x-z-t \end{bmatrix}; \\ \text{(g)} & n = m = 4, \varphi \left(\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \right) = \begin{bmatrix} x+3y-2t \\ x+y+z \\ 2y+t \\ y+z \end{bmatrix}; \\ \text{(h)} & n = m = 4, \varphi \left(\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \right) = \begin{bmatrix} x+3y-2t \\ x+y+z \\ 2y-3t \\ 2x-3t \\ 2x+4y+z-2t \end{bmatrix}; \\ \text{(i)} & n = m = 3, \varphi \left(\begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} \right) = \begin{bmatrix} x+z \\ 2xz \\ 3x-y+z \end{bmatrix}. \end{aligned}$$

If φ is a linear map, check if it is a monomorphism, or an epimorphism.

- (2) Let V, V_1, V_2, W be vector spaces and let $V = V_1 \oplus V_2$. Show that for each pair of linear maps $\varphi_i \colon V_i \to W$, i = 1, 2, there exists exactly one linear map $\varphi \colon V \to W$ such that $\varphi \mid_{V_i} = \varphi_i$. If V = W and $\varphi_1 = \mathrm{Id}_{V_1}, \varphi_2 = -\mathrm{Id}_{V_2}$ then φ will be called the symmetry of V_1 along V_2 . If $\varphi_1 = \mathrm{Id}_{V_1}$, and φ_2 is the zero map, then φ will be called the projection of V onto V_1 along V_2 .
- (3) Find kernels and images of linear maps from Problem (1).
- (4) Find kernels and images of the symmetry (projection) of V_1 (onto V_1) along V_2 (see Problem (??)).
- (5) A linear map $\varphi : K^2 \to K^3$ is given by $\varphi \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x + 3y \\ x y \\ 3y \end{bmatrix}$. Find: (a) images of the following subspaces: K^2 , $\lim \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$, $\lim \left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$, $\lim \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right)$, $\lim \left(\lim \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) \right)$, $\lim \left(\lim \left(\lim \left(\lim (1 \\ 1 \end{bmatrix} \right) \right)$, $\lim \left(\lim \left(\lim (1 \\ 1 \end{bmatrix} \right) \right)$, $\lim \left(\lim (1 \\ 1 \end{bmatrix} \right)$, $\lim \left(\lim (1 \\ 1 \end{bmatrix} \right)$, $\lim \left(\lim (1 \\ 1 \end{bmatrix} \right)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$, $\lim (1 \\ \lim (1 \\ 1 \end{bmatrix} \Big)$,

(b) counterimages of the following subspaces: K^3 , $\left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$, $\ln \left(\begin{bmatrix} 2\\1\\3 \end{bmatrix} \right)$, $\ln \left(\begin{bmatrix} 2\\1\\0 \end{bmatrix} \right)$,

$$\lim \left(\begin{bmatrix} 3\\-1\\3 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right), \left\{ \begin{bmatrix} x\\y\\z \end{bmatrix} \in K^3 : x+y+z=0 \right\}.$$
(6) A linear map $\varphi: V \to W$ satisfies the following conditions

$$\varphi(\alpha_1) = \beta_1 + 2\beta_2 + 3\beta_3,$$

$$\varphi(\alpha_2) = 4\beta_1 + 5\beta_2 + 6\beta_3,$$

$$\varphi(\alpha_3) = 7\beta_1 + 8\beta_2 + 9\beta_3$$

where $(\alpha_1, \alpha_2, \alpha_3)$ is a basis of V, and $(\beta_1, \beta_2, \beta_3)$ a basis of W. Find the dimensions of the image and of the kernel of φ .

(7) Is there a linear map $\varphi : \mathbb{R}^3 \to \mathbb{R}^3$ such that

(a)
$$\varphi\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\0\\0\end{bmatrix}, \varphi\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right) = \begin{bmatrix}0\\1\\0\end{bmatrix}, \varphi\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}0\\0\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\1\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \varphi\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\2\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}1\\2\\1\end{bmatrix}\right) = \begin{bmatrix}4\\4\\4\end{bmatrix};$$

(c) $\varphi\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\3\end{bmatrix}, \varphi\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\2\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}1\\2\\1\end{bmatrix}\right) = \begin{bmatrix}4\\4\\4\end{bmatrix};$
(d) $\varphi\left(\begin{bmatrix}1\\1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\\0\end{bmatrix}, \varphi\left(\begin{bmatrix}0\\1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\2\\1\end{bmatrix}, \varphi\left(\begin{bmatrix}1\\-2\\1\end{bmatrix}\right) = \begin{bmatrix}4\\4\\4\end{bmatrix};$
If so discuss the number of solutions and find at least one such map

If so, discuss the number of solutions and find at least one such map. (8) Find a linear map $\tau : \mathbb{R}^3 \to \mathbb{R}^3$ such that:

$$\tau\left(\left[\begin{array}{c}1\\1\\2\end{array}\right]\right) = \left[\begin{array}{c}2\\1\\1\end{array}\right], \tau\left(\left[\begin{array}{c}2\\1\\1\end{array}\right]\right) = \left[\begin{array}{c}1\\1\\2\end{array}\right], \tau \circ \tau = \mathrm{id}_{\mathbb{R}^3}.$$

(9) Find:

(a) the symmetry in
$$\mathbb{R}^2$$
 of $\lim \left(\begin{bmatrix} 1\\2 \end{bmatrix} \right)$ along $\lim \left(\begin{bmatrix} 0\\1 \end{bmatrix} \right)$;
(b) the symmetry in \mathbb{R}^3 of $\lim \left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right)$ along $\lim \left(\begin{bmatrix} 1\\1\\1 \end{bmatrix} \right)$;

(c) the projection of
$$\mathbb{R}^2$$
 onto $\lim \left(\begin{bmatrix} 2\\3 \end{bmatrix} \right)$ along $\lim \left(\begin{bmatrix} -1\\1 \end{bmatrix} \right)$;
(d) the projection of \mathbb{R}^3 onto $\lim \left(\begin{bmatrix} 1\\0\\1 \end{bmatrix} \right)$ along $\lim \left(\begin{bmatrix} 1\\1\\1 \end{bmatrix} , \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right)$.
(10) Find a linear map $\psi : \mathbb{R}^3 \to \mathbb{R}^3$ such that $\operatorname{Ker} \psi = \lim \left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right)$ and $\operatorname{Im} \psi = \lim \left(\begin{bmatrix} 1\\1\\1 \end{bmatrix} \right)$.
(11) In the vector space K^3 consider the bases $\mathcal{A}_3 = \left(\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right)$, $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right)$, and in the vector space K^4 consider the bases $\mathcal{A}_4 = \left(\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \right)$. Find
the matrix of a linear map $\psi : K^n \to K^n$ in the bases \mathcal{A}_a and \mathcal{B}_m (\mathcal{A}_a and \mathcal{A}_m ; \mathcal{B}_a and \mathcal{B}_m ; \mathcal{B}_n
and \mathcal{A}_m , if:
(a) $n = m = 3, \varphi \left(\begin{bmatrix} x\\y\\z\\z \end{bmatrix} \right) = \begin{bmatrix} x+z\\2x+z\\3x-y+z \end{bmatrix}$; (b) $n = m = 3, \varphi \left(\begin{bmatrix} x\\y\\z\\z \end{bmatrix} \right) = \begin{bmatrix} x-y+z\\y\\z\\z \end{bmatrix}$;
(c) $n = 4, m = 3, \varphi \left(\begin{bmatrix} x\\y\\z\\z \end{bmatrix} \right) = \begin{bmatrix} 2x+z\\3x-y+z\\z\\x+z-t \end{bmatrix}$; (d) $n = 4, m = 3, \varphi \left(\begin{bmatrix} x\\y\\z\\z \end{bmatrix} \right) = \begin{bmatrix} 2x+z\\3x-y+z\\z\\x+z-t \end{bmatrix}$; (f) $n = 3, m = 4, \varphi \left(\begin{bmatrix} x\\y\\z\\z \end{bmatrix} \right) = \begin{bmatrix} x+3y-2z\\x+y+z\\2y-3z\\2x+4y+z\\zy-3z\\2x+4y+z \end{bmatrix}$.
(12) Let $\psi : K^3 \to V_1$ be the projection and $\psi : K^3 \to K^3$ the symmetry of V_1 along V_2 , where:
(a) $V_1 = \ln(c_1, c_2), V_2 = \ln(c_1 + c_3)$;

4

- (b) $V_1 = \lim(\varepsilon_1, \varepsilon_2), V_2 = \lim(\varepsilon_2 + \varepsilon_3);$
- (c) $V_1 = \ln(\varepsilon_1 + \varepsilon_2, \varepsilon_2), V_2 = \ln(\varepsilon_1 + \varepsilon_3).$

Find the matrix of φ in the bases $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ of K^3 and $(\varepsilon_1, \varepsilon_2)$ of V_1 . Find the matrix of ψ in the bases $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ and $(\varepsilon_1, \varepsilon_2, \varepsilon_1 + \varepsilon_3)$ of K^3 .

(13) A linear map $\varphi : K^2 \to K^3$ has the following matrix in the bases $\left(\begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1 \end{bmatrix} \right)$ and $\left(\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\0 \end{bmatrix} \right)$: $\begin{bmatrix} 1 & -1\\0 & 2\\3 & -2 \end{bmatrix}.$

Find $\varphi\left(\left[\begin{array}{c}x\\y\end{array}\right]\right)$.

(14) An endomorphism ψ of K^3 has the following matrix in the basis $(\varepsilon_1, \varepsilon_2, \varepsilon_1 + \varepsilon_3)$:

1	1	1	
-1	0	2	
3	2	4	
		_	

Find ψ .

(15) An endomorphism ψ of \mathbb{R}^3 has the following matrix in the basis $(\varepsilon_1 - \varepsilon_2, \varepsilon_2, \varepsilon_1 + \varepsilon_3)$:

$$\begin{bmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix}.$$

Find bases of the kernel and of the image of ψ . Does the vector $\begin{bmatrix} 1\\ 1\\ -1 \end{bmatrix}$ belong to the kernel of

 ψ ? What is the image of the vector $\begin{bmatrix} 0\\1\\0 \end{bmatrix}$?

(16) Consider the vector space \mathbb{R}^n and its bases \mathcal{A} and \mathcal{B} . Denote by \mathcal{E} the canonical basis $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n)$. Find the transition matrices from \mathcal{E} to \mathcal{A} , from \mathcal{E} to \mathcal{B} , from \mathcal{A} to \mathcal{E} and from \mathcal{A} to \mathcal{B} , if:

(a)
$$n = 2, \mathcal{A} = \left(\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 5 \end{bmatrix} \right), \mathcal{B} = \left(\begin{bmatrix} -1 \\ 6 \end{bmatrix}, \begin{bmatrix} 0 \\ 4 \end{bmatrix} \right);$$

(b) $n = 3, \mathcal{A} = \left(\begin{bmatrix} 8 \\ -6 \\ 7 \end{bmatrix}, \begin{bmatrix} -16 \\ 7 \\ -13 \end{bmatrix}, \begin{bmatrix} 9 \\ -3 \\ 7 \end{bmatrix} \right), \mathcal{B} = \left(\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \right);$
(c) $n = 4, \mathcal{A} = \left(\begin{bmatrix} 1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \mathcal{B} = \left(\begin{bmatrix} 1 \\ 2 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right).$

- (17) Let $\mathcal{A} = (\alpha_1, \alpha_2, \alpha_3), \mathcal{B} = (\beta_1, \beta_2, \beta_3)$ be bases of the space \mathbb{C}^3 . Find the matrix of the symmetry of $V_1 = \ln(\alpha_1, \alpha_2)$ along $V_2 = \ln(\alpha_3)$ in the basis \mathcal{B} , if $\alpha_1 = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$, $\alpha_2 = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$, $\alpha_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}^2$, $\beta_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \beta_2 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \beta_3 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$. Find the matrix of the projection onto V_1 along V_2 .
- (18) Find the coordinates of the vector $\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$ in the basis $\begin{pmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\4 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} \end{pmatrix}$ of the

space K^4 if char $K \neq 2, 3$.

(19) Find formulae for the change of coordinates while passing from the basis

$$\left(\left[\begin{array}{c} 1\\0\\1\\1 \end{array} \right], \left[\begin{array}{c} 1\\1\\0 \end{array} \right], \left[\begin{array}{c} 1\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} 1\\1\\0\\0 \end{array} \right], \left[\begin{array}{c} 1\\0\\0\\-1 \end{array} \right] \right) \right)$$

to the basis

$$\left(\begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1 \end{bmatrix} \right)$$

of the space K^4 if char $K \neq 2$. (20) Find the matrix of $\varphi : K^3 \to K^3$ in the basis $(\varepsilon_1, \varepsilon_2 + \varepsilon_3, \varepsilon_1 + \varepsilon_2)$ if the matrix of φ in the basis (a) $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$, (b) $(\varepsilon_1 + \varepsilon_2, \varepsilon_2, \varepsilon_3)$

(a)
$$(\varepsilon_1, \varepsilon_2, \varepsilon_3)$$
, (b) $(\varepsilon_1$
is equal to $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

(21) An endomorphism $\varphi \in \operatorname{End}(\mathbb{C}^2)$ has the following matrix in the basis $\mathcal{A} = \left(\begin{vmatrix} 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 0 \\ i \end{vmatrix} \right)$:

(a)
$$\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$$
; (b) $\begin{bmatrix} 2 & 1 \\ -1 & 5 \end{bmatrix}$.
Find eigenvalues and eigenvect

Find eigenvalues and eigenvectors of φ . What will be the solution if we assume that \mathcal{A} is the canonical basis? And if we assume that $\varphi \in \text{End}(\mathbb{R}^2)$?

(22) A is the matrix of an endomorphism $\varphi \in \operatorname{End}(\mathbb{C}^n)$ in the canonical basis. Find eigenvalues and eigenvectors of φ . If possible, find a basis of \mathbb{C}^n consisting of eigenvectors of φ , as well as a matrix $C \in GL(n, \mathbb{C})$ such that the matrix $C^{-1}AC$ is diagonal.

$$n = 2: (a) \quad A = \begin{bmatrix} 0 & 2 \\ -3 & 5 \end{bmatrix}; (b) \quad A = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}; (c) \quad A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}; (d) \quad A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix};$$
$$n = 3: (e) \quad A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{bmatrix}; (f) \quad A = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}; (g) \quad A = \begin{bmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{bmatrix};$$

$$n = 4: (h) \quad A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{bmatrix}; (i) \quad A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}; (j) \quad A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 2 & 2 & 4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 2 \end{bmatrix};$$

(k)
$$A = \begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}; (l) \quad A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -6 & 1 & 7 & -1 \end{bmatrix}; (m) \quad A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -2 & 0 & 0 & 0 \end{bmatrix}.$$

(23) Find the characteristic polynomial of an endomorphism, which in a certain basis has the following matrix:

(a)
$$\begin{bmatrix} -a_{n-1} & -a_{n-2} & \cdots & -a_1 & -a_0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix};$$
 (b)
$$\begin{bmatrix} 0 & 0 & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & 1 & \cdots & 0 & -a_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -a_{n-1} \end{bmatrix}$$

(24) Find eigenvalues and corresponding eigenvectors of endomorphisms of real vector spaces whose matrices in the canonical bases are equal to: г -

(a)
$$\begin{bmatrix} -3 & 4 \\ 2 & -1 \end{bmatrix}$$
; (b) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$; (d) $\begin{bmatrix} 2 & 4 \\ 5 & 3 \end{bmatrix}$;
(e) $\begin{bmatrix} 5 & 6 & -3 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \end{bmatrix}$; (f) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$; (g) $\begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & 3 \\ -1 & -3 & 0 \end{bmatrix}$.

(25) Find eigenvalues and corresponding eigenvectors of endomorphisms of complex vector spaces whose matrices in the canonical bases are equal to:

(a)
$$\begin{bmatrix} -1 & 2i \\ -2i & 2 \end{bmatrix}$$
; (b) $\begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$ for $a \in \mathbb{R}$;
(c) $\begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ -1 & 0 & 1 & \cdots & 0 & 0 \\ 0 & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & -1 & 0 \end{bmatrix}$.
Find a formula for A^n , if A equals to

(a)
$$\begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}$$
; (b) $\begin{bmatrix} 0 & 2 \\ -3 & 5 \end{bmatrix}$; (c) $\begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$; (d) $\begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix}$.
ind a formula for a_{r} if

(27) Find a formula for a_n , if

(26)

(a)
$$a_0 = 0, a_1 = 1, a_{n+2} = a_{n+1} + a_n$$
 (Fibonacci sequence);

(b) $a_0 = 1, a_1 = 2, a_{n+2} = 3a_n - 2a_{n+1}$.