Problem set 2: groups, rings and fields.

- (1) (a) Find all possible values of the function $x \mapsto x^2$ in \mathbb{Z}_{11} .
 - (b) Find all possible values of the function $x \mapsto x^{-1}$ in \mathbb{Z}_{13} .
 - (c) Find the domain and all possible values of the function $x \mapsto \frac{x+2}{2x-1}$ in \mathbb{Z}_7 .
- (2) Solve the following equations:
 - (a) $5x^2 + 5x + 1 = 0$ in \mathbb{Z}_{11} , (b) $x^2 + x + 3 = 0$ in \mathbb{Z}_5 ,
 - (c) $2x^2 + 2x + 2 = 0$ in \mathbb{Z}_{13} , (d) $2x^3 + 3x^2 + x 4 = 0$ in \mathbb{Z}_7 .
- (3) For which values of $m \in K$ the equation $mx^2 + (2m+1)x + m 2 = 0$ has two different solutions in K
 - (a) if $K = \mathbb{Z}_{11}$? (b) if $K = \mathbb{Z}_{13}$?
- (4) Show that every element of \mathbb{Z}_5 is a cube. Same for \mathbb{Z}_{11} . How about \mathbb{Z}_{13} ?
- (5) Check if there exist (and, if so, find them) square roots of -1 in \mathbb{Z}_p for p = 2, 3, 5, 7, 11, 13.
- (6) Solve the equation 5x = 2 in \mathbb{Z}_{65537} .
- (7) Find an element of \mathbb{Z}_5 such that every element other than 0 is a power of this element. Same for \mathbb{Z}_7 and \mathbb{Z}_{11} .
- (8) Check that every element of \mathbb{Z}_5 other than 0 raised to a certain nonzero power gives 1. Same for \mathbb{Z}_7 and \mathbb{Z}_{11} .
- (9) Evaluate $(6^2 \cdot 3 + 5 \cdot 4 1) \cdot (5 \cdot 12 7)^{-1}$ in \mathbb{Z}_{17} and \mathbb{Z}_{23} .
- (10) Solve the following systems of equations

(a)
$$\begin{cases} 3x + 5y = 2\\ 4x + 9y = 4 \end{cases}$$
 in \mathbb{Z}_{13} and \mathbb{Z}_7 (b)
$$\begin{cases} 5x + 4y = a\\ 4x + 3y = b \end{cases}$$
 in \mathbb{Z}_{11} and \mathbb{Z}_5 .

(11) Find the number of solutions of the system $\begin{cases} 3x + 4y = 2\\ 9x + y = 7 \end{cases}$ in \mathbb{Z}_{11} . Same for \mathbb{Z}_{13} and \mathbb{Z}_{17} .