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1 Basic notions

We assume that the notion of set is a primitive notion, hence it is not defined. However, we can define and describe particular

sets, namely by listing or describing their elements:

Q = {x ∈ R; such that there are k ∈ Z, l ∈ Z such that l 6= 0 and x = k/l}

This is Q - the set of rational numbers. The empty set is denoted by ∅ (there is only one empty set!).

The notation x ∈ B should be read as ”x belongs to B”, while A ⊆ B means ”A is contained in B”, i.e. if x ∈ A, then

x ∈ B. In such a case we say that B is a superset of A and A is a subset of B.

Powerset of A is P (A) and it is a collection of all subsets of A, i.e. B ∈ P (A) ⇔ B ⊆ A. Note that for any A, ∅ ⊆ A.

Hence, P ({1}) = {∅, {1}}, P ({1, 2}) = {∅, {1}, {2}, {1, 2}}.

Basic operations are:

1. Union (of sets): ∪, x ∈ A ∪B ⇔ x ∈ A or x ∈ B.

2. Intersection: ∩, x ∈ A ∩B ⇔ x ∈ A and x ∈ B.

3. Difference: \, x ∈ A \B ⇔ x ∈ A and not in B, i. e. A \B = {x;x ∈ A and x /∈ B}

4. Symmetric difference: 	, x ∈ A 	 B ⇔ (x ∈ A and x /∈ B) or (x ∈ B and x /∈ A), i.e. A 	 B = (A ∪ B) \ (B ∩ A) =

(A \B) ∪ (B \A).

5. If A is a family of sets, then
⋃
A is its union, i.e. if x ∈

⋃
A, then there is A ∈ A such that A ∈ A.

Examples

1. If A = {A ∈ R; f(x) = 0}, B = {x ∈ R; g(x) = 0}, then A ∪B = {x ∈ R; f(x) · g(x) = 0}

2. If A = {A ∈ P (R) such that there is n ∈ N, n 6= 0, A = [ 1n ; 2− 1n ]}, then
⋃
A = (0, 2).

3. If A = {x ∈ R; f(x) = 0}, B = {x ∈ R; g(x) = 0}, then A ∩B = {x ∈ R; f2(x) + g2(x) = 0}.

4. If A = {A ∈ P (R) such that there is n ∈ N, n 6= 0, A = (0, 1/n)}, then
⋂
A = ∅.

De Morgan laws:

A \ (B ∪ C) = (A \B) ∪ (A \ C) A \ (B ∩ C) = (A \B) ∪ (A \ C)

Cartesian product of two sets: A×B = {〈a, b〉; a ∈ A, b ∈ B}.

Intuitively, cardinality of the set A is its ”number of elements”. It is denoted by |A|, e.g. |{1, 2, 3, 4, 5}| = 5. However,

this number can be infinite. In fact, we have various kinds of infinity: the number of elements of N is usually denoted by ℵ0;

cardinality of R = c. It can be shown that |N| < |R|, |R| = |P (N)|, |R× R| = |R|, |N| = |Q| or |Z| = |N|.
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2 Functions and relations

Function is a set which elements are ordained pair of the form (x, y) and: 1) for any z ∈ f there are x, y such that z = 〈x, y〉;

2) for any x, y1, y2: if 〈x, y1〉 ∈ f and 〈x, y2〉 ∈ f , then y1 = y2.

Examples:

1. f = {〈x, y〉 ∈ R× R; y = x2}

2. g = {〈1, 1〉, 〈2, 2〉, 〈3, 1〉, 〈4, 2〉, 〈5, 3〉}. We see that g(1) = 1, g(2) = 2, g(3) = 1, g(4) = 2, g(5) = 3.

3 Relations

Any R ⊆ X1 ×X2 × ... ×Xn is called n-ary relation. Assume that we have only X1 and X2. Moreover, X1 = X2 = X, i.e.

we are working with X × X. Then R ⊆ X × X is called binary relation. Binary relations can be (of course these are only

selected possible properties):

1. Reflexive: for any x ∈ X, xRx.

2. Symmetric: for any x1, x2 ∈ X, x1Rx2 ⇒ x2Rx1.

3. Transitive: for any x1, x2, x3 ∈ X, if x1Rx2 and x2Rx3, then x1Rx3.

4. Anti-symmetrical: for any x1, x2 ∈ X, if (x1Rx2)and(x2Rx1), then x1 = x2.

5. Connex: for any x1, x2 ∈ X we have x1Rx2 or x2RX1.

If our relation holds properties:

• 1, 2, 3, then we speak about equivalence relation.

• 1, 3, 4, then (...) partial order.

• 1, 3, then (...) preorder (or quasi-order).

• 1, 3, 4, 5, then (...) linear oder.

In case of the equivalence relation we can speak about classes of equivalence: R(x) = {y ∈ X;xRy}. If R(x) 6= R(y), then

R(x) ∩R(y) = ∅.

Examples:

1. x1|x2 ⇔ there is n ∈ N such that nx1 = x2. This is partial order.

2. x1αx2 ⇔ |x1| ¬ |x2|. This is preorder (but not partial order).

3. Let R be relation on the set U = Z×Z1, where Z1 = Z\{0}. Assume that (m,n)R(p, q)⇔ mq = np. This is equivalence

and rational numbers are its classes of equivalence (for example, 3/4, 6/8 and 12/16 belong to the R(3/r), they are

equivalent with 3/4).

4. Let Q∗ = Q \ {0} and x1Rx2 ⇔ x1
x2
> 0. There are two equivalence classes: Q∗|R = {R(-1), R(1)}.
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4 Some logic

Let us discuss the set L of all theorems which can be inferred by modus ponens (i.e. ϕ,ϕ→ γ ` γ) from the set:

ϕ→ (γ → ϕ)

(ϕ→ (γ → ψ))→ ((ϕ→ γ)→ (ϕ→ ψ)),

(¬γ → ¬ϕ)→ (ϕ→ γ)

It can be shown (by means of so-called soundess and completeness theorem) that L is equal with the set of all formulas

which have value 1 (or T ) in the typical truth-table.

Examples:

p q q → p p→ (q → p)

0 0 1 1

0 1 0 1

1 0 1 1

1 1 1 1

p q p ∨ q p→ (p ∨ q)

0 0 0 1

0 1 1 1

1 0 1 1

1 1 1 1

Here we have truth-tables for classical connectives:

∧ 0 1

0 0 0

1 0 1

∨ 0 1

0 0 1

1 1 1

→ 0 1

0 1 1

1 0 1

(classical implication if false only if we have 1→ 0)
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