ELEMENTS OF LOGIC AND SET THEORY

(Elementy logiki i teorii zbiorów)

24 października 2019

1 Basic notions

We assume that the notion of **set** is a primitive notion, hence it is not defined. However, we can define and describe particular sets, namely by listing or describing their elements:

 $\mathbb{Q} = \{x \in \mathbb{R}; \text{ such that there are } k \in \mathbb{Z}, l \in \mathbb{Z} \text{ such that } l \neq 0 \text{ and } x = k/l\}$

This is \mathbb{Q} - the set of rational numbers. The empty set is denoted by \emptyset (there is only one empty set!).

The notation $x \in B$ should be read as "x belongs to B", while $A \subseteq B$ means "A is contained in B", i.e. if $x \in A$, then $x \in B$. In such a case we say that B is a superset of A and A is a subset of B.

Powerset of A is P(A) and it is a collection of all subsets of A, i.e. $B \in P(A) \Leftrightarrow B \subseteq A$. Note that for any $A, \emptyset \subseteq A$. Hence, $P(\{1\}) = \{\emptyset, \{1\}\}, P(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

Basic **operations** are:

- 1. Union (of sets): \cup , $x \in A \cup B \Leftrightarrow x \in A$ or $x \in B$.
- 2. Intersection: \cap , $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$.
- 3. Difference: $\langle x \in A \setminus B \Leftrightarrow x \in A \text{ and } \mathbf{not in } B, i. e. A \setminus B = \{x; x \in A \text{ and } x \notin B\}$
- 4. Symmetric difference: \ominus , $x \in A \ominus B \Leftrightarrow (x \in A \text{ and } x \notin B)$ or $(x \in B \text{ and } x \notin A)$, i.e. $A \ominus B = (A \cup B) \setminus (B \cap A) = (A \setminus B) \cup (B \setminus A)$.
- 5. If \mathcal{A} is a family of sets, then $\bigcup \mathcal{A}$ is its union, i.e. if $x \in \bigcup \mathcal{A}$, then there is $A \in \mathcal{A}$ such that $A \in \mathcal{A}$.

Examples

- 1. If $A = \{A \in \mathbb{R}; f(x) = 0\}, B = \{x \in \mathbb{R}; g(x) = 0\}$, then $A \cup B = \{x \in \mathbb{R}; f(x) \cdot g(x) = 0\}$
- 2. If $\mathcal{A} = \{A \in P(\mathbb{R}) \text{ such that there is } n \in \mathbb{N}, n \neq 0, A = [\frac{1}{n}; 2 \frac{1}{n}]\}$, then $\bigcup \mathcal{A} = (0, 2)$.
- 3. If $A = \{x \in \mathbb{R}; f(x) = 0\}, B = \{x \in \mathbb{R}; g(x) = 0\}$, then $A \cap B = \{x \in \mathbb{R}; f^2(x) + g^2(x) = 0\}$.
- 4. If $\mathcal{A} = \{A \in P(\mathbb{R}) \text{ such that there is } n \in \mathbb{N}, n \neq 0, A = (0, 1/n)\}, \text{ then } \bigcap \mathcal{A} = \emptyset.$

De Morgan laws:

 $A \setminus (B \cup C) = (A \setminus B) \cup (A \setminus C) \ A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$

Cartesian product of two sets: $A \times B = \{ \langle a, b \rangle; a \in A, b \in B \}.$

Intuitively, **cardinality** of the set A is its "number of elements". It is denoted by |A|, e.g. $|\{1, 2, 3, 4, 5\}| = 5$. However, this number can be infinite. In fact, we have various kinds of infinity: the number of elements of \mathbb{N} is usually denoted by \aleph_0 ; cardinality of $\mathbb{R} = \mathfrak{c}$. It can be shown that $|\mathbb{N}| < |\mathbb{R}|$, $|\mathbb{R}| = |P(\mathbb{N})|$, $|\mathbb{R} \times \mathbb{R}| = |\mathbb{R}|$, $|\mathbb{N}| = |\mathbb{Q}|$ or $|\mathbb{Z}| = |\mathbb{N}|$.

2 Functions and relations

Function is a set which elements are ordained pair of the form (x, y) and: 1) for any $z \in f$ there are x, y such that $z = \langle x, y \rangle$; 2) for any x, y_1, y_2 : if $\langle x, y_1 \rangle \in f$ and $\langle x, y_2 \rangle \in f$, then $y_1 = y_2$.

Examples:

1. $f = \{ \langle x, y \rangle \in \mathbb{R} \times \mathbb{R}; y = x^2 \}$

2. $g = \{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 3, 1 \rangle, \langle 4, 2 \rangle, \langle 5, 3 \rangle\}$. We see that g(1) = 1, g(2) = 2, g(3) = 1, g(4) = 2, g(5) = 3.

3 Relations

Any $R \subseteq X_1 \times X_2 \times ... \times X_n$ is called *n*-ary relation. Assume that we have only X_1 and X_2 . Moreover, $X_1 = X_2 = X$, i.e. we are working with $X \times X$. Then $R \subseteq X \times X$ is called *binary relation*. Binary relations can be (of course these are only selected possible properties):

- 1. Reflexive: for any $x \in X$, xRx.
- 2. Symmetric: for any $x_1, x_2 \in X$, $x_1Rx_2 \Rightarrow x_2Rx_1$.
- 3. Transitive: for any $x_1, x_2, x_3 \in X$, if $x_1 R x_2$ and $x_2 R x_3$, then $x_1 R x_3$.
- 4. Anti-symmetrical: for any $x_1, x_2 \in X$, if (x_1Rx_2) and (x_2Rx_1) , then $x_1 = x_2$.
- 5. Connex: for any $x_1, x_2 \in X$ we have x_1Rx_2 or x_2RX_1 .

If our relation holds properties:

- 1, 2, 3, then we speak about *equivalence relation*.
- 1, 3, 4, then (...) partial order.
- 1, 3, then (...) preorder (or quasi-order).
- 1, 3, 4, 5, then (...) *linear oder*.

In case of the equivalence relation we can speak about classes of equivalence: $R(x) = \{y \in X; xRy\}$. If $R(x) \neq R(y)$, then $R(x) \cap R(y) = \emptyset$.

Examples:

- 1. $x_1|x_2 \Leftrightarrow$ there is $n \in \mathbb{N}$ such that $nx_1 = x_2$. This is partial order.
- 2. $x_1 \alpha x_2 \Leftrightarrow |x_1| \leq |x_2|$. This is preorder (but not partial order).
- 3. Let R be relation on the set $U = \mathbb{Z} \times \mathbb{Z}_1$, where $\mathbb{Z}_1 = \mathbb{Z} \setminus \{0\}$. Assume that $(m, n)R(p, q) \Leftrightarrow mq = np$. This is equivalence and rational numbers are its classes of equivalence (for example, 3/4, 6/8 and 12/16 belong to the $\mathbb{R}(3/r)$, they are equivalent with 3/4).
- 4. Let $\mathbb{Q}^* = \mathbb{Q} \setminus \{0\}$ and $x_1 R x_2 \Leftrightarrow \frac{x_1}{x_2} > 0$. There are two equivalence classes: $\mathbb{Q}_{|R}^* = \{R(-1), R(1)\}$.

4 Some logic

Let us discuss the set L of all theorems which can be inferred by modus ponens (i.e. $\varphi, \varphi \to \gamma \vdash \gamma$) from the set:

$$\begin{split} \varphi &\to (\gamma \to \varphi) \\ (\varphi \to (\gamma \to \psi)) \to ((\varphi \to \gamma) \to (\varphi \to \psi)), \\ (\neg \gamma \to \neg \varphi) \to (\varphi \to \gamma) \end{split}$$

It can be shown (by means of so-called *soundess and completeness* theorem) that L is equal with the set of all formulas which have value 1 (or T) in the typical truth-table.

Examples:

p	q	$q \rightarrow p$	$p \to (q \to p)$
0	0	1	1
0	1	0	1
1	0	1	1
1	1	1	1

p	q	$p \vee q$	$p \to (p \lor q)$
0	0	0	1
0	1	1	1
1	0	1	1
1	1	1	1

Here we have truth-tables for classical connectives:

\wedge	0	1
0	0	0
1	0	1
V	0	1
0	0	1
1	1	1
\rightarrow	0	1
0	1	1
1	0	1

(classical implication if false only if we have $1 \rightarrow 0)$