
Project 2: scanners and parsers

1. Wstęp.

This assignment involves writing a scanner and parser for HTML that enforce some simple grammar
rules, e.g., that the < li > tag for list items can occur only within lists, or that tags specifying boldface
< b > and italics < i > should be properly nested. As with the previous assignment, the goal is to
get you sufficiently acquainted with lex and yacc that you can start the main compiler project. For this
reason, the grammar rules used in this assignment cover only a very small part of the complete HTML
syntax.

Documentation for lex/flex is to be found here:
http://www.kompilatory.agh.edu.pl/pages/tk-laboratorium/flex.html
and for bison here:
http://www.kompilatory.agh.edu.pl/pages/tk-laboratorium/bison.html

1.1. Functionality. Your program should read its input from stdin, ensure that the input follows the
grammar rules for our subset of HTML, discard all HTML tags, and write the remaining text to stdout.
Error messages (see below) should be written to stderr.

The HTML grammar (see below) provided may generate conflicts when you translate it to a YACC
input file. If this happens (it may or may not), for this assignment you are not required to remove these
conflicts. However, if this happens you should figure out why the conflict(s) are occurring, so that you
can determine whether the default action taken by your parser is appropriate.

1.2. HTML grammar. Lexical rules:
A tag is a sequence of characters of the form < S >, where S is a sequence of printable characters not

beginning with a whitespace character and not containing any ”>” characters. Our grammar recognizes
the following tags:

DOC START : < html >
DOC END : < /html >
HEAD START : < head >
HEAD END : < /head >
BODY START : < body >
BODY END : < /body >
BF START : < b >
BF END : < /b >
IT START : < i >
IT END : < /i >
UL START : < ul >
UL END : < /ul >
OL START : < ol >
OL END : < /ol >
LI START : < li >
LI END : < /li >

Additionally, the token TAG will match any tag that is not one of

the tags listed above, and the token TEXT will match any (single) character that is not within a tag or
comment; ; and the token SPACE will match any non-empty sequence of whitespace characters.
Syntax rules:



Syntax rules are made up of tokens and nonterminals. A token denotes one or more related strings
that are matched by the scanner (e.g., ”identifier”, ”integer constant”). A nonterminal denotes a set of
strings with similar syntax structure (e.g., ”declaration”, ”while loop”). In the rules below, tokens are
written in teletype font, like this; nonterminals are written in italics, like this. The symbol ∅ denotes
the empty sequence.

A syntax rule consists of a left hand side and a right hand side, separated by a colon ”:”. The
left hand side is a nonterminal whose structure is defined by the rule. A right hand side consists of
a set of alternatives, separated by ”|”. Each alternative is a sequence (possibly empty) of tokens and
nonterminals.

Doc : Wspace DOC START Wspace Head Wspace Body Wspace DOC END Wspace
Head : HEAD START Html HEAD END
Body : BODY START Html BODY END
Wspace : SPACE

| ∅
Html : Item Html

| ∅
Item : BF START Html BF END

| IT START Html IT END
| List
| Other

List : UL START Wspace ItemList Wspace UL END
| OL START Wspace ItemList Wspace OL END

ItemList : ItemList Wspace OneItem
| OneItem

OneItem : LI START Html LI END
Other : TAG

| TEXT
| SPACE

The start symbol for the grammar is Doc.

1.3. Syntax errors. Your program will be expected to deal with errors in a ”reasonable” way. Error
messages should be printed to stderr. They should be specific and should contain enough information
(with at least a line number) to allow the user to locate the problems. Since we have not yet discussed
error recovery, you are not required to recover from syntax errors: it is OK for your program to exit after
detecting the first syntax error. However, if you choose to implement error recovery, that is OK too.

2. Invoking your program.

Your executable program will be called myhtml2txt. It will read input from stdin and write its output
to stdout. Thus, to translate an HTML file foo.html to a text file bar.txt, invoke your program as

myhtml2txt < foo.html > bar.txt


