
Project 2

Summary:
Download the file

www.math.us.edu.pl/˜pgladki/teaching/2016-2017/tk lab2.zip

Run sml and compile the code using CM.make ”sources.cm”;
This assignment consists of 2 parts. They are independent of each other, so it doesn’t matter which

one you work on first.
Part A: abstract syntax
Translate (by hand) a short Fun program into abstract syntax constructors.

(1) Read and understand the following files: absyn.sml test.sml. Notice that in test.sml there are five
Fun programs translated by hand into abstract syntax constructors.

(2) After your CM.make, execute Test.run(); from the sml interactive prompt. This will pretty-print
and evaluate all five programs.

(3) Read the following files, but you’re not (yet) responsible for understanding them in detail: heap.sig
heap.sml eval.sig eval.sml funpp.sig

(4) Glance through the following files, but most likely you will never be responsible for understanding
them in detail: table.sig table.sml funpp.sml

(5) Finish myfun.sml by translating the given program into abstract syntax constructors.

Part B: lexical analyzer:
Build a lexer for the Fun language. In order to do this, you will need to figure out all of the tokens

that you need to lex, by reading

www.math.us.edu.pl/˜pgladki/teaching/2016-2017/tk fun.html

You will be building your lexer using ML-LEX. There is online documentation on

http://www.smlnj.org/doc/ML-Lex/manual.html

There is also some help in your textbook (Appel, chapter 2).

(1) Read and understand the following files: sources.cm, errormsg.sml, tokens.sig, tokens.sml, fun.lex,
runlex.sml. Only these files are relevant to this part of the assignment.

(2) Edit the code in fun.lex. You will have to remove some of the sample code and add a lot of your
own.
• The tokens are declared in tokens.sig. Here is a list of symbols that will appear in the source

along with the tokens they should be associated with:
− > ARROW ! BANG
:= ASSIGN) RPAREN
(LPAREN || OR
& AND = EQ
> GT < LT
* TIMES - MINUS
+ PLUS ; SEMICOLON
, COMMA : COLON
i PROJ

where i is a nonnegative integer without leading 0’s: 0,1,...
Fun keywords should be represented using tokens with the same name. The end-of-file token
should be represented using the token EOF.

1

2

Each token takes two integers: the line number and column number of the beginning of the
token. These are used for error reporting. In the example below, x is on the second line in
column 7. Notice, the first row is row 1 and the first column is column 1 (as opposed to 0).
if true then
let x = ...
• UseErrorMsg.error: ErrorMsg.pos2 − > string − > unit to report errors. It takes two ar-

guments: a pair of file-positions (the beginning and end of the erroneous text, measured in
characters from the beginning of the file), and the error message to print out. You should
keep the ErrorMsg module informed of where the newlines occur (by calling newLine) so that
it can translate these file-positions to line numbers. The make pos function is a convenient
way to convert the things ML-Lex knows (yypos and yytext) into the file positions of the
beginning and end of the token.
• Be careful with your syntax in lex files. Remember that each lex definition must end with

”;” and each lexing rule must also end with ”;”. If you forget ”;” then ML-Lex will complain.
• type is a reserved keyword that we may use for later language extensions. For now, the

easiest way to handle it is to simply enforce that programs don’t contain it. Since there’s no
token type for it in the current files, this can’t be done in the parser, so you may want to do
it in the lexer. But it’s also fine if you don’t handle it at all - simply assume that programs
don’t contain type. But strings like typexx should still be lexed as identifiers.
• To test your code, run RunLex.runlex ”test.fun”; It will output a sequence of tokens

along with the line and column number of each token. As always, a single test is far from
complete. You will want to write your own test cases and thoroughly test your lexer.

(3) Nested comments. This assignment would be a lot easier if the Fun language didn’t have
nested comments. I recommend that you first get everything working except nested comments.
Then add that feature as your time permits.

That’s it for now. Send the files myfun.sml, fun.lex and readme over email, where, in particular, you
should describe all the decisions you have made while designing your software. The deadline for this
assignment is November 21st, 2016.

