
Project 0
In this assignment, you will familiarize yourself with functional programming in Standard ML by

implementing functions of various types. Each function can be implemented with no more than a few
lines of code, but requires a bit of thinking. So this assignment should not be painstaking programming;
rather it will be great fun!

Before we start, we need to have our workspace organized.
• Download the archive

www.math.us.edu.pl/˜pgladki/teaching/2016-2017/tke lab0.zip

and read it. This assignment consists of two parts, the files are to be found in two directories:
part one and part two.
• If you haven’t done so far, go ahead and instal SML.
• In order to compile your code, run SML in the same directory where you unpacked the archive
tke lab0.zip, that is either inpart one or in part two.
• Type CM.make ”sources.cm”; This should load and compile all sources for each directory.

After downloading and unpacking tke lab0.zip you should find czesc1.sml,
czesc1-sig.sml and sources.cm in part one and czesc2.sml, czesc2-sig.sml and
sources.cm in part two. You will be editing czesc1.sml i czesc2.sml, don’t change anything in
czesc1-sig.sml, czesc2-sig.sml or in sources.cm. The stub file czesc1.sml looks like this:

structure foo :>PART ONE =
struct
exception NotImplemented
datatype ’a tree= Leaf of ’a | Node of ’a tree * ’a * ’a tree
fun sum = raise NotImplemented
fun fac = raise NotImplemented
...
end

and the stub file czesc2.sml like that:

structure foo :>PART TWO =
struct
exception NotImplemented
datatype ’a tree = Leaf of ’a | Node of ’a tree * ’a * ’a tree
funfact =raiseNotImplemented
...
end

Fill the function body with your own code. This is absolutely crucial; if you leave code that does not
compile, you will receive no credit. If you cannot implement a function, just leave it intact!

Spend a few good hours working hard on the assignment. Try to implement as many functions as
possible. To run your program on the Standard ML interpreter, use the Compile Manager. And whenever
you compile your source code, you should open your structure.

Here is a sample session using the provided file sources.cm in part one:
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[foo:38 ] sml
Standard ML of New Jersey v110.58 [built: Fri Mar 03 15:32:15 2006]
- CM.make "sources.cm";
[autoloading]
.....
[New bindings added.]
val it = true : bool
- open foo;
opening foo
exception NotImplemented
datatype ’a tree = Leaf of ’a | Node of ’a tree * ’a * ’a tree
val sum : int ->int
val fac : int ->int
...
- sum 10;
val it = 55 : int;
- fac 10;
uncaught exception NotImplemented
raised at: hw1.sml:5.27-5.41

Once you decide you’re done with everything, send the files czesc1.sml and czesc2.sml to your
instructor. The due date is November 14th, 2016.

1. Part one

Before you start, read Chapter 1 from Benjamin C. Pierce, Types and Programming Languages, MIT
Press, 2002 and Chapter 1, Chapter 2, Section 3.1 and Section 3.2 from Riccardo Puccella, Notes on
Programming SML/NJ:

http://www.cs.cornell.edu/riccardo/smlnj.html

Your code should strictly follow the Standard ML style guide. This is not a crucial requirement, but a
good programming style helps not only the reader understand your code but also yourself better develop
the code.

For this assignment, do not use any library functions provided by Standard ML.
OK, here we go:

1.1. Functions on integers.

1.1.1. sum for adding integers 1 to n (inclusive). (2 points)
(Type) sum : int ->int
(Description) sum n returns

∑n
i=1 i

(Invariant) n > 0.
(Example)
- sum 10;
val it = 55 : int
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1.1.2. Factorial fac. (2 points)
(Type) fac: int ->int
(Description) fac n returns

∏n
i=1 i.

(Invariant) n > 0.

1.1.3. Fibonacci sequence fib. (1 point)
(Type) fib: int ->int
(Description) fib n returns fib (n− 1) + fib (n− 2) if n ≥ 2 and 1 if n = 0 or n = 1.
(Invariant) n ≥ 0.

1.1.4. Greatest common denominator gcd. (2 points)
(Type) gcd: int * int ->int
(Description) gcd (m,n) returns the greatest common denominator of m and n computed with the

Euclidean algorithm
(Invariant) m ≥ 0, n ≥ 0, m+ n > 0.

1.1.5. Maximum max from a list. (2 points)
(Type) max: int list ->int
(Description) max l returns the greatest integer from the list l. If the list is empty, it returns 0.
(Example) max [5,3,6,7,4] returns 7.

1.2. Functions on binary trees.

1.2.1. sumTree for computing the sum of integers stored in a binary tree. (2 points)
(Type) sumTree : int tree ->int
(Description) sumTree t returns the sum of integers stored in the tree t
(Example) sumTree (Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)) returns 17.

1.2.2. depth for computing the depth of tree. (2 points)
(Type) depth : ’a tree ->int
(Description) depth t returns the length of the longest path from the root to leaf
(Example) depth (Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)) returns 2

1.2.3. binSearch for searching an element in a binary search tree. (2 points)
(Type) binSearch : int tree ->int ->bool
(Description) binSearch t x returns true if x is in t and false otherwise.
(Niezmiennik) t is a binary search tree: all numbers in a left subtree are smaller than the number of

the root, and all numbers in a right subtree are greater than the number of the root. We further assume
that all numbers are distinct.

(Example) binSearch (Node (Node (Leaf 1, 2, Leaf 3), 4, Leaf 7)) 2 returns true. binSearch
(Node (Node (Leaf 1, 2, Leaf 3), 4, Leaf 7)) 5 returns false.

1.2.4. preorder for a preorder traversal of binary trees. (2 points)
(Type) preorder: ’a tree ->’a list
(Description) preorder t returns a list of elements produced by a preorder traversal of the tree t.
(Example) preorder (Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)) returns [7, 3, 1, 2, 4].

1.3. Functions on lists of integers.
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1.3.1. listAdd or adding each pair of integers from two lists. (2 points)
(Type) listAdd: int list ->int list ->int list
(Description) listAdd [a,b,c,...] [x,y,z,...] returns [a+x,b+y,c+z,...].
(Example) listAdd [1, 2] [3, 4, 5] returns [4, 6, 5].

1.3.2. insert for inserting an element into a sorted list. (2 points)
(Type) insert: int ->int list ->int list
(Description) insert m l inserts m in the sorted list l.
(Invariant) l is sorted in ascending order.
(Example) insert 3 [1, 2, 4, 5] returns [1, 2, 3, 4, 5].

1.3.3. insort for insertion sort. (2 points)
(Type) insort: int list ->int list
(Description) insort l returns a sorted list of elements in l.
(Example) insort [3, 7, 5, 1, 2] returns [1, 2, 3, 5, 7].

1.4. Higher-order functions.

1.4.1. compose for functional composition. (2 points)
(Type) compose: (’a ->’b) ->(’b ->’c) ->(’a ->’c)
(Description) compose f g returns g ◦ f .
(Remark) You should use only two arguments to implement compose.Thus, something like this:

fun compose f g = ...

is OK, but that:

fun compose f g x = ...

is not.

1.4.2. curry for currying. (2 points)
(Type) curry: (’a * ’b ->’c) ->(’a ->’b ->’c)
(Description) We have a choice of how to write functions of two or more arguments. Functions are in

curried form if they take arguments one at a time. Uncurried functions take arguments as a pair. curry
f transforms an uncurried function f into a curried version.

(Example)
fun multiply x y = x * y (* curried *)
fun multiplyUC (x, y) = x * y (* uncurried *)
Applying curry to multiplyUC yields multiply.

1.4.3. uncurry for uncurrying. (2 points)
(Type) uncurry: (’a ->’b ->’c) ->(’a * ’b ->’c)
(Description) See above.
(Example) Applying uncurry to multiply yields multiplyUC.
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1.4.4. multifun for applying a function n-times. (2 points)
(Type) multifun : (’a ->’a) ->int ->(’a ->’a)
(Description) (multifun f n) x returns f(f(. . . f(x)))︸ ︷︷ ︸

n times
(Example) (multifun (fn x => x + 1) 3) 1 returns 4.
(multifun (fn x => x * x) 3) 2 returns 256.
(Invariant) n ≥ 1.

1.5. Functions on ’a list.

1.5.1. ltake for taking the list of the first i element of l. (2 points)
(Type) ltake: ’a list ->int ->’a list
(Description) ltake l n returns first n elements of l. If n > l, it returns l.
(Example) ltake [3, 7, 5, 1, 2] 3 returns [3,7,5].
ltake [3, 7, 5, 1, 2] 7 returns [3,7,5,1,2].
ltake ["s","t","r","i","k","e","r","z" ] 5 returns ["s","t","r","i","k"].

1.5.2. lall for examining a list. (2 points)
(Type) lall : (’a ->bool) ->’a list ->bool
(Description) lall f l returns true if for every element x of the list l, fx returns true; otherwise it

returns false.
(Example) lall (fn x =>x >0) [1, 2, 3] returns true.
lall (fn x =>x >0) [ 1, 2, 3] returns false.

1.5.3. lmap for converting a list into another list. (3 points)
(Typ) lmap : (’a ->’b) ->’a list ->’b list
(Opis) lmap f l applies f to each element of l from left to right, returning the list of results.
(Example) lmap (fn x => x + 1) [1, 2, 3] returns [2, 3, 4].

1.5.4. lrev for reversing a list. (3 punkty)
(Type) lrev: ’a list ->’a list
(Description) lrev l reverses l.
(Example) lrev [1, 2, 3, 4] returns [4, 3, 2, 1].

1.5.5. lzip for pairing corresponding members of two lists. (3 points)
(Type) lzip: (’a list * b’ list) ->(’a * ’b) list
(Description) lzip ([x1, . . . , xn],[y1, . . . , yn])⇒[(x1, y1), . . . , (xn, yn)]. If two lists differ in length,

ignore surplus elements.
(Example) lzip (["Rooney","Park","Scholes","C.Ronaldo"],[8,13,18,7,10,12]) returns [("Rooney",8),("Park",13),("Scholes",18),("C.Ronaldo",7)].

1.5.6. split for splitting a list into two lists. (3 points)
(Type) split: ’a list ->’a list * ’a list
(Description) split l returns a pair of two lists. The first list consists of elements in odd positions

and the second consists of elements in even posistions in a given list respectively.
(Example) split [1, 3, 5, 7, 9, 11] returns ([1, 5, 9], [3, 7, 11]).
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1.5.7. cartprod for the Cartesian product of two sets. (3 points).
(Type) cartprod: ’a list ->’b list ->(’a * ’b) list
(Description) cartprod S T returns the set of all pairs (x, y) with x ∈ S and y ∈ T . The order of

elements matters:
cartprod [x1, . . . , xn] [y1, . . . , yn] ⇒ [(x1, y1), . . . , (x1, yn), (x2, y1), . . . , (xn, yn)].
(Example) cartprod [1, 2] [3, 4, 5] ⇒ [(1,3), (1,4), (1,5), (2,3), (2,4), (2,5)].

2. Part two

2.1. Recursive functions.

2.1.1. lconcat for concatenating a list of lists. (3 points)
(Type) lconcat : ’a list list ->’a list
(Description) lconcat l concatenates all elements of l.
(Example) lconcat [[1, 2, 3], [6, 5, 4], [9]] returns [1, 2, 3, 6, 5, 4, 9].

2.1.2. lfoldl for left folding a list. (3 points)
(Type) lfoldl: (’a * ’b ->’b) ->’b ->’a list ->’b
(Description) lfoldl f e l takes e and the first item of l and applies f to them, then feeds the function

with this result and the second argument and so on.
lfoldl f e [x1, x2, . . . , xn] returns f(xn, . . . , f(x2, f(x1, e)) . . .) or e if the list is empty

2.2. Tail recursive functions. For each description below, give a tail recursive implementation. In all
cases except for union, you want to introduce a tail recursive helper function; the main function is not
recursive but just invokes the helper function with appropriate arguments. For example, a tail recursive
implementation of sumList may look like

fun sumList inputList =
let
fun sumList’ l accum =
...

in
sumList’ inputList 0
end

where sumList’ is tail recursive.
In the case of union you may want to introduce some local helper functions. The main function itself

is tail-recursive and may use those helper functions.

2.2.1. fact for factorial. (1 point)
(Type) fact: int ->int
(Description) fact n returns

∏n
i=1 i.

(Invariant) n ≥ 0.

2.2.2. power for powers. (1 point)
(Type) power: int ->int ->int
(Description) power x n returns xn.
(Invariant) n ≥ 0.
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2.2.3. fib for Fibonacci sequence. (1 point)
(Type) fib: int ->int
(Description) fib n returns fib (n− 1) + fib (n− 2) if n ≥ 2 and 1 if n = 0 or n = 1.
(Invariant) n ≥ 0.

2.2.4. lfilter for filtering a list. (1 punkt)
(Type) lfilter : (’a ->bool) ->’a list ->’a list
(Description) lfilter p l returns all elements of l that satisfies the predicate p.
(Example) lfilter (fn x =>x >2) [0, 1, 2, 3, 4, 5] returns [3, 4, 5].

2.2.5. ltabulate. (1 punkt)
(Type) ltabulate : int ->(int ->’a) ->’a list
(Description) ltabulate n f applies f to each element of the list [0, 1, ..., n-1].
(Example) ltabulate 4 (fn x =>x * x) returns [0, 1, 4, 9].
(Invariant) n ≥ 0

2.2.6. union for union of two sets. (3 points)
(Type) union: ’’a list ->’’a list ->’’a list
(Description) union S T returns a set that includes all elements of S and T without duplication of

any element. Note that all list elements have an equality type as indicated by equality type variable ’’a.
The order of elements in the return value does not matter.

(Invariant) Each set consists of distinct elements.
(Example) union [1, 2, 3] [2, 4, 6] returns [3, 1, 2, 4, 6].

2.2.7. inorder for an inorder traversal of binary trees. (4 points)
(Type) inorder: ’a tree ->’a list
(Description) inorder t returns a list of elements produced by an inorder traversal of the tree t
(Example) inorder (Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)) returns [1, 3, 2, 7, 4].
(Example) inorder can be implemented as follows:

fun inorder t =
let
fun inorder’ (t’ : ’a tree) (post : ’a list) : ’a list = ...
in
inorder’ t [ ]
end

post will be a list of elements to be appended to the result of an inorder traversal of t’. For example,
when inorder’ visits the node marked 2 in the tree below, post will be bound to [1, 6, 3, 7].
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2.2.8. postorder for a postorder traversal of binary trees. (4 points)
(Type) postorder: ’a tree ->’a list
(Description) postorder t returns a list of elements produced by a postorder traversal of the tree t
(Example) postorder (Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)) returns [1, 2, 3, 4, 7].

2.2.9. preorder for a preorder traversal of binary trees. (4 points)
(Type) preorder: ’a tree ->’a list
(Description) preorder t returns a list of elements produced by a preorder traversal of the tree t
(Example) preorder (Node (Node (Leaf 1, 3, Leaf 2), 7, Leaf 4)) returns [7, 3, 1, 2, 4].

2.3. Sorting in the ascending order.

2.3.1. quicksort for quick sorting. (4 points)
(Type) quicksort: int list ->int list
(Description) quicksort l iimplements quick sorting by selecting the first element of l as a pivot.
(Example) quicksort [3, 7, 5, 1, 2] selects 3 as a pivot to obtains two sublists [1, 2] and [5,
7] to be sorted independently.

2.3.2. mergesort for merge sorting. (4 points)
(Type) mergesort: int list ->int list
(Description) mergesort l divides l into two sublists, sorts each sublist, and then merges the two

sorted sublists. If the length of l is even, then the two sublists are of equal length. If not, one sublist has
one more element than the other.

2.4. Structures. The goal of this part is to learn modular programming in SML – structures and signa-
tures. We will first implement a structure for heaps. You should keep in mind that this data structure
is not an ordinary heap data structure. You had better think of it as a mechanism for dynamic memory
allocation. See the explanation below carefully.

2.4.1. Heap for heaps. (5 points)
The structure Heap conforms to the signature HEAP. A heap is a mechanism for dynamic memory

allocation.

signature HEAP =
sig exception InvalidLocation
type loc
type ’a heap
val empty : unit ->’a heap
val allocate : ’a heap ->’a ->’a heap * loc
val dereference : ’a heap ->loc ->’a
val update : ’a heap ->loc ->’a ->’a heap
end

• loc is the internal representation of location, which is similar to the pointer of C language. type
loc is not visible to the outside of the structure;
• ’a heap is a heap for the type ’a;
• empty () returns an empty heap;
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• allocate h v allocates the given value v to a fresh heap cell and returns the pair (h′, l) of the
updated heap h′ and the location l of this cell;
• dereference h l fetches the value v stored in the heap cell at location l. InvalidLocation is

raised if the l is an invalid loc;
• update h l v updates the heap cell at location l with the given value v and returns the updated

heap h′. InvalidLocation is raised if the l is an invalid loc.

2.4.2. Sygnatura DICT. DICT is a signature for dictionaries.

signature DICT =
sig
type key
type ’a dict
val empty : unit ->’a dict
val lookup : ’a dict ->key ->’a option
val delete : ’a dict ->key ->’a dict
val insert : ’a dict ->key * ’a ->’a dict
end

• empty () returns an empty dictionary;
• lookup d k searches the key k in the dictionary d. If the key is found, it returns the associated

item. Otherwise, it returns NONE;
• delete d k deletes the key k and its associated item in the dictionary d and returns the resultant

dictionary d′. If the key does not exist in the dictionary d, it returns the given dictionary d
without any modification;
• insert d (k, v) inserts the new key k and its associated item v in the dictionary d. If the key k

already exists in the dictionary d, it just updates its associated item with the given item v.

2.4.3. Structure DictList. (5 points)
Implement the structure DictList of signature DICT with the definition ’a dict = (key * ’a)
list.

The structure DictList uses a list of pairs as the representation of a dictionary. The implementation
should be straightforward because a list of pairs itself may be thought of as a dictionary.

2.4.4. Structure DictFun. (5 points)
Implement the structure DictFun of signature DICT with the definition ’a dict = key ->’a option.
The structure DictFun uses a “functional representation” of dictionaries. The idea is that we represent

a dictionary as a function that, given a key, returns an associated item. The implementation of DictFun
may be either very difficult or just a piece of cake depending on how familiar you are with “functional
thinking.” My advice is: forget about everything that you have learned so far about imperative program-
ming; just “think functionally!” You will be amazed at the conciseness of your code once you figure it
out.


