Perm number:

Midterm - take-home part

Due date: Wednesday, May 12th

Let (G, *, e) be a group. A subset H of the set G that contains the element e and such that (H, *, e) is a group itself (written H < G) is called a **subgroup**.

(1) (5 points) Check that $\mathbb{Z} < \mathbb{R}$, $\mathbb{R}^* < \mathbb{C}^*$, SL(n, K) < GL(n, K).

- (2) (20 points) Let (G, *, e) be a group, and let $\emptyset \neq H \subset G$. Prove that the following three conditions are equivalent: • H < G,
 - *H* has the following properties:
 - $e \in H$,

- 2

- $\forall a, b \in H(a * b \in H),$ $\forall a, b \in H(a^{-1} \in H).$ H has the following property: $\forall a, b \in H(a * b^{-1} \in H).$

(3) (5 points) Check that $\mathbb{C}(n) < \mathbb{C}^*$, $\{0, 2, 4\} < \mathbb{Z}$, $2\mathbb{Z} = \{2k : k \in \mathbb{Z}\} < \mathbb{Z}$.

3

(4) (20 points) Let (G, *, e) be a group, let $H_1 < G$ and $H_2 < G$. Show that $H_1 \cap H_2 < G$. Is it true that $H_1 \cup H_2 < G$? Either prove the statement, or give a counterexample.

4

Let (G, *, e) be a group, let $A \subset G$. The intersection of all subgroups of G that contain the set A is called the **subgroup** generated by A and denoted by $\langle A \rangle$.

Every subset A with the property that $\langle A \rangle = G$ is called the set of generators of G. If $A = \{a_1, a_2, \ldots, a_n\}$, we write $\langle a_1, a_2, \ldots, a_n \rangle$ to denote $\langle A \rangle$.

If there exist elements $a_1, a_2, \ldots, a_n \in G$ such that $G = \langle a_1, a_2, \ldots, a_n \rangle$, we say that G is finitely generated. (5) (25 points) Let (G, *, e) be a group, let $A \subset G$. Prove that

$$< A >= \{a_1^{k_1} * a_2^{k_2} * \dots * a_n^{k_n} : n \in \mathbb{N}, k_i \in \mathbb{Z}, a_i \in A\}$$

(Hint: Let $M = \{a_1^{k_1} * a_2^{k_2} * \ldots * a_n^{k_n} : n \in \mathbb{N}, k_i \in \mathbb{Z}, a_i \in A\}$. You need to show that $\langle A \rangle = M$. To show that $\langle A \rangle \subset M$, prove that $M \langle G$ and that $A \subset M$ (why is this enough?). To show that $\langle A \rangle \supset M$ use induction with respect to n)

(6) (25 points) Show that every finitely generated subgroup of \mathbb{Q} can be generated by only one element. Find an element $a \in \mathbb{Q}$ such that $\langle a \rangle = \langle \frac{2}{3}, \frac{4}{5} \rangle$.

ю