Project 10 - Cardinality.

We say that a function is a **bijection** if it is both one-to-one and onto. Check that the following functions are bijections:

(1) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(n,m) = 2^n \cdot (2m+1) - 1$ (2) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \begin{pmatrix} f(n,m) = \\ n+m+12+n \end{pmatrix}$ (3) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, f(n,m) = \sum_{k=1}^{n+m-1} k + m - 1$ (4) $f: \mathbb{Z} \times \mathbb{N} \to \mathbb{Q}, f(n,m) = \frac{n}{m+1}$

We say that two sets X and Y have the same cardinal number, written |X| = |Y|, if there is a bijection between X and Y. Check that the following sets have the same cardinal number as the set \mathbb{N} :

(1) $\mathbb{N} \times \mathbb{N}$

 $(2) \mathbb{Z}$

(3) \mathbb{Q}

(4) every infinite subset of \mathbb{N}

Sets that have the same cardinal number as the set \mathbb{N} are said to be **countable**. Infinite sets that are not countable are called **uncountable**. Sets that are countable are also said to have the cardinal number equal to \aleph_0 (aleph zero).

- (1) Show that the set \mathbb{R} is uncountable.
- (2) Show that $|\mathbb{R}| = |\mathbb{R} \times \mathbb{R}|$

Sets that have the same cardinal number as the set \mathbb{R} are said to have the cardinal number equal to \mathfrak{c} (continuum). If there is a one-to-one function $f: X \to Y$, then we say that X has the cardinal number no greater than Y and write $|X| \leq |Y|$. If $|X| \leq |Y|$ but $|X| \neq |Y|$, then we say that X has the cardinal number less than Y and write |X| < |Y|. Prove that:

(1) if |A| = |B|, |C| = |D|, and $A \cap B = C \cap D = \emptyset$, then $|A \cup B| = |C \cup D|$

- (2) if |A| = |B|, then |P(A)| = |P(B)| (P(X) denotes the set of all subsets of X)
- (3) $|P(A)| = |\{0,1\}^A|$ (Y^X denotes the set of all functions $X \to Y$)
- (4) if |A| = |C| and |B| = |D|, then $|A^B| = |C^D|$
- (5) if $B \cap C = \emptyset$, then, for every A, $|A^{B \cup C}| = |A^B \times A^C|$
- (6) $|(A^B)^C| = |A^{B \times C}|$
- (7) (Cantor Theorem) |A| < |P(A)|
- (8) (Cantor-Bernstein Theorem) if $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.
- (9) $|P(\mathbb{N})| = |\mathbb{R}|$

In view of Problems 7 and 9, it makes sense to ask whether there are sets S such that $|\mathbb{N}| < |S| < |\mathbb{R}|$. This question is now known as the **continuum hypothesis**.