
Project 3 - Quantifiers.
In propositional logic we deal with with simple propositional formulas such as p = “in France people speak French” or

q = “7 is a prime number”. We will now extend this theory to a type of logic where we will be also dealing with predicates and
quantification, that is we will allow a formula to depend on variables that will determine its truth value. For example, we will
consider formulas such as P (x) = “x is a prime number”, that will have the truth value 1 if x = 7, and the truth value 0 if, for
example, x = 4.

More precisely, by a predicate (or propositional function1) we understand a type of syntactic formula that depends on some
variables, is well-formed and can be assigned a truth value. Each variable in a predicate is assumed to belong to a domain of
discourse. For example, in the predicate “x is a prime” x represents some integer, so the domain of discourse is the set of all
integers. Note that for a predicate P (x) with the domain of discourse X we have:

a ∈ {x ∈ X : P (x)} ⇔ ω(P (a)) = 1 ∧ a ∈ X.

If P (x) is a predicate with the domain of discourse X, we write

∀x ∈ XP (x) or
∧

x∈X

P (x)

to indicate that for all elements x ∈ X the formula P (x) has the truth value 1. The symbol ∀ (or
∧

) is called the universal
quantifier.

Similarly, if P (x) is a predicate with the domain of discourse X, we write

∃x ∈ XP (x) or
∨

x∈X

P (x)

to indicate that for some element x ∈ X the formula P (x) has the truth value 1. The symbol ∃ (or
∨

) is called the existential
quantifier.

Illustrate the following theorems with examples:
(1) ¬∀x ∈ XP (x) ⇔ ∃x ∈ X¬P (x)
(2) ¬∃x ∈ XP (x) ⇔ ∀x ∈ X¬P (x)
(3) ∀x ∈ XP (x) ∧Q(x) ⇔ (∀x ∈ XP (x)) ∧ (∀x ∈ XQ(x))
(4) ∃x ∈ XP (x) ∨Q(x) ⇔ (∃x ∈ XP (x)) ∨ (∃x ∈ XQ(x))
(5) ∃x ∈ X∀y ∈ X∀P (x, y) ⇒ ∀y ∈ X∃x ∈ XP (x, y)
(6) (∀x ∈ XP (x)) ∨ (∀x ∈ XQ(x)) ⇒ ∀x ∈ XP (x) ∨Q(x)
(7) ∃x ∈ XP (x) ∧Q(x) ⇒ (∃x ∈ XP (x)) ∧ (∃x ∈ XQ(x))

Illustrate with the appropriate examples why the following statements are false:
(1) ∀x ∈ X∃y ∈ X∀P (x, y) ⇒ ∃y ∈ X∀x ∈ XP (x, y)
(2) ∀x ∈ XP (x) ∨Q(x) ⇒ (∀x ∈ XP (x)) ∨ (∀x ∈ XQ(x))
(3) (∃x ∈ XP (x)) ∧ (∃x ∈ XQ(x)) ⇒ ∃x ∈ XP (x) ∧Q(x) ⇒

A mathematical theory is a set of sentences that is closed under logical deduction. We usually distinguish certain subset of
“basic” sentences that we call axioms. Also, to simplify notation, we usually give names to various objects and thus formulate
definitions. Sentences that are logical consequences of axioms are then called theorems.

First order logic uses only discrete variables; although in the above notation we quantify variables over sets, in the considered
examples we always assume domains of discourse to be fixed in one way or another. Theories formlated infrst order logic have
certain limitations, for example it’s not possible to express finiteness of a set in a first order language. Therefore we introduce the
concept of second order logic, where variables can range over sets of individuals.

In this course we will have a closer look at the theory of natural numbers based on Peano axioms. This is an example of a second
order theory – there exist theories of natural numbers that utilize only first order logic (such as Robinson’s arithmetics), although
they are usually weaker that Peano’s theory (that is not all theorems that are provable in Peano theory are provable)

1The term “propositional function”, introduced by Johnsonbaugh, is somewhat obsolete, and in most modern books the term “predicate” is used.


