Perm number:

Final exam – take-home part

Due date: Monday, June 8th

- (1) (25 points) A partial order is a binary relation that is reflexive, antisymmetric, and transitive. Check if the following relations are partial orders:
 - $aRb \Leftrightarrow a|b$ defined in the set \mathbb{Z}
 - $aRb \Leftrightarrow a \leq b$ defined in the set \mathbb{N}
 - $ARB \Leftrightarrow A \subset B$ defined in the set P(X) for some nonempty set X
 - $aRb \Leftrightarrow a \leq b \leq a+1$ defined in the set \mathbb{Z}
 - $(a,b)R(c,d) \Leftrightarrow (a = c \land b < d) \lor (a < c \land b = d)$ defined in the set $\mathbb{N} \times \mathbb{N}$
- (2) (25 points) For a set X with a relation of partial order R the element $x \in X$ is called the least element of X if, for all $y \in X$, xRy. Prove that in a partially ordered set there exists at most one least element.
- (3) (25 points) A linear order is a binary operation that is antisymmetric, transitive, and total. A well-order relation is a linear order with the property that every non-empty subset S has a least element. Check if the following sets are linearly or well- ordered:
 - \mathbb{Z}
 - \mathbb{Q}
 - \mathbb{R}
 - $\{(\frac{1}{n},1]:n\in\mathbb{N}\}$
 - P(X) for any set X
- (4) (25 points) Suppose every nonempty subset of a partially ordered set has a least element. Does it follow that this set is well-ordered?