Math 5BI: Problem Set 6
Gradient dynamical systems

Recall that if f(x) = f(z1,22,...,2,) is a smooth function of n variables, the
gradient of f is the vector field

(3f/0$1)(x1,x2,...7xn)
Vix)=(V)(x1,22,...,2,) = ,
(0f [Oxn)(x1, 22y ..y Ty)

a vector field which is perpendicular to the level sets of f. We say that a point
c = (c1,...,¢,) is a critical point for f if Vf(c) = 0. Critical points are
candidates for maxima and minima.

Problem 6.1. a. Find the critical points of the function f(z,y) = 32% — 3y? —
213,

b. Find the critical points of the function f(x,y) = (1/2)y? — cos x.

We want to investigate the behaviour of a function f(z1,...,x,) near a critical
point ¢ = (c1,...,¢,) and develop a “second derivative test” for local minima

and maxima. To do this, we consider the Hessian matrix of all second-order
partial derivatives at c:
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Now it is a theorem that
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Hence the Hessian matrix is always symmetric, A = A7

A:

Problem 6.2. a. Calculate the Hessian matrix of the function f(z,y) =
322 — 3y? — 223 at the critical point (1,0).

b. Calculate the Hessian matrix of the function f(z,y) = 322 — 3y? — 223 at
the critical point (0,0).

c. Calculate the Hessian matrix of the function f(z,y) = (1/2)y? — cosz at the
critical point (0, 0).



d. Calculate the Hessian matrix of the function f(z,y) = (1/2)y* — cosz at the
critical point (m,0).
Recall that the eigenvalues of a square matrix A are the solutions A to the

equation
det(A — M) =0. (1)

Problem 6.3. a. Show that the eigenvalues of a 2 x 2 symmetric matrix with
real entries are real.

b. If a 2 x 2 symmetric matrix has two distinct eigenvalues A\; and Ay show that
the corresponding eigenspaces

Wy, = {x€R?: Ax = \ix}, W), = {x € R? : Ax = \ox}

are perpendicular to each other. Hint: Use the fact that x - y = y'x where on
the right side of this equality we are using matrix multiplication. Also use the
fact that if A is symmetric, A = A.

More generally, if A is an n X n symmetric matrix, it can be proven that all of
its eigenvalues are real and that eigenspaces for distinct eigenvalues are perpen-
dicular. In fact, it can be shown that there is a matrix B such that BT = B
and

M O - 0
BTAB — 0 X -+ 0 7
0 0 - M\,
where Ay, Ag, -+, A, are the eigenvalues of A.

Definition. The symmetric matrix A is said to be
e positive definite if all of its eigenvalues are positive.
e negative definite if all of its eigenvalues are negative.
e nondegenerate if all of its eigenvalues are nonzero.
e nondegenerate of index k if it is nondegenerate and exactly k of its eigen-

values are negative.

The second derivative test.  Suppose that f(x1,...,x,) has continuous
second partial derivatives and c is a critical point for f. If the Hessian of f at
cis

1. positive-definite, then c is a local minimum,
2. negative-definite, then c is a local maximum,

If the Hessian of f at c is nondegenerate of index k, we say that c is a “saddle
point” of index k.



Problem 6.4. a. Which of the critical points of the function f(z,y) = 322 —
3y? — 223 are local minima? local maxima? saddle points of index one?

b. Which of the critical points of the function f(x,y) = (1/2)y? — cos x are local
minima? local maxima? saddle points of index one?
c. Which of the critical points of the function f(z,y) = cosz — (1/2)y? are local
minima? local maxima? saddle points of index one?

How do we see that the second derivative test works? If f(x) = f(z1,2z2,...,2p),
we can regard the gradient of f as defining a system of differential equations

‘%1 = %(xyxg,...,xn) 2
2
‘ZE—; = 8‘1’1 (x,x2,..., %)

Such a system of differential equations is called a gradient dynamical system. It
can be written in vector form as

dx
i Vf(x).

A constant solution ¢ = (c¢1,...,¢,) to the gradient dynamical system (2)
is just a critical point for f. It is easy to visualize gradient dynamical systems
in two variables. One begins by plotting the level curves f(x1,z2) = ¢, thus
obtaining a topographic map of the surface z = f(x1,22). The orbits of the
gradient dynamical system are then just the orbits of the gradient dynamical
system.

One can think of the orbits of the gradient dynamical system

dx

ar = Vf(x)

as representing the paths of rain droplets flowing over the surface z = f(x1, z2),
except that they are traversed in the opposite direction. The mountain peaks,
mountain passes, and lake bottoms on the topographic map are included among
the critical points of f.

In more than two variables, the orbits of such systems are still orthogonal

to the level sets f(z1,...,z,) = ¢. One can have the same geometrical picture
in one’s mind.

To investigate the behaviour of a function f(x1,...,z,) near a critical point
¢ = (c1,...,¢n), we can consider the linearization of the gradient dynamical
system (2) at the equilibrium solution c:
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we can rewrite this system as
dxl/dt ail e A1n xr1 — C1
dx,, /dt ani  --- Qpn Ty — Cp

or equivalently, as

d d,
dit( =A(x—c) or d—}t, = Ay, where y=x-c,
and
a1 . A1n
A =
Gnl Ann

is the Hessian matrix.

If ¢ is a critical point for f(z1,...,z,) and

dx _ A(x —c) is the linearization of dx _ V f(x)
dt dt

at c, the eigenvalues of A determine the qualitative behaviour of the solutions to

the linearization. If all of the eigenvalues of A are negative, then all the nonzero

solutions will tend towards ¢ as t — co. We see that in this case c is a local

maximum. If all of the eigenvalues are positive, then all the nonzero solutions

will move away from c as t — oo and ¢ musts be a local minimum.



