
Math 5BI: Problem Set 6

Gradient dynamical systems

Recall that if f(x) = f(x1, x2, . . . , xn) is a smooth function of n variables, the
gradient of f is the vector field

∇f(x) = (∇f)(x1, x2, . . . , xn) =

 (∂f/∂x1)(x1, x2, . . . , xn)
· · ·

(∂f/∂xn)(x1, x2, . . . , xn)

 ,

a vector field which is perpendicular to the level sets of f . We say that a point
c = (c1, . . . , cn) is a critical point for f if ∇f(c) = 0. Critical points are
candidates for maxima and minima.

Problem 6.1. a. Find the critical points of the function f(x, y) = 3x2− 3y2−
2x3.

b. Find the critical points of the function f(x, y) = (1/2)y2 − cos x.

We want to investigate the behaviour of a function f(x1, . . . , xn) near a critical
point c = (c1, . . . , cn) and develop a “second derivative test” for local minima
and maxima. To do this, we consider the Hessian matrix of all second-order
partial derivatives at c:

A =


∂

∂x1

(
∂f
∂x1

)
(c) · · · ∂

∂xn

(
∂f
∂x1

)
(c)

· · · · · · · · ·
∂

∂x1

(
∂f

∂xn

)
(c) · · · ∂

∂xn

(
∂f

∂xn

)
(c)


Now it is a theorem that

∂

∂xi

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xi

)
.

Hence the Hessian matrix is always symmetric, A = AT .

Problem 6.2. a. Calculate the Hessian matrix of the function f(x, y) =
3x2 − 3y2 − 2x3 at the critical point (1, 0).

b. Calculate the Hessian matrix of the function f(x, y) = 3x2 − 3y2 − 2x3 at
the critical point (0, 0).

c. Calculate the Hessian matrix of the function f(x, y) = (1/2)y2 − cos x at the
critical point (0, 0).
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d. Calculate the Hessian matrix of the function f(x, y) = (1/2)y2− cos x at the
critical point (π, 0).

Recall that the eigenvalues of a square matrix A are the solutions λ to the
equation

det(A− λI) = 0. (1)

Problem 6.3. a. Show that the eigenvalues of a 2× 2 symmetric matrix with
real entries are real.

b. If a 2×2 symmetric matrix has two distinct eigenvalues λ1 and λ2 show that
the corresponding eigenspaces

Wλ1 = {x ∈ R2 : Ax = λ1x}, Wλ2 = {x ∈ R2 : Ax = λ2x}

are perpendicular to each other. Hint: Use the fact that x · y = ytx where on
the right side of this equality we are using matrix multiplication. Also use the
fact that if A is symmetric, At = A.

More generally, if A is an n× n symmetric matrix, it can be proven that all of
its eigenvalues are real and that eigenspaces for distinct eigenvalues are perpen-
dicular. In fact, it can be shown that there is a matrix B such that BT = B
and

BT AB =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · ·
0 0 · · · λn

 ,

where λ1, λ2, · · · , λn are the eigenvalues of A.

Definition. The symmetric matrix A is said to be

• positive definite if all of its eigenvalues are positive.

• negative definite if all of its eigenvalues are negative.

• nondegenerate if all of its eigenvalues are nonzero.

• nondegenerate of index k if it is nondegenerate and exactly k of its eigen-
values are negative.

The second derivative test. Suppose that f(x1, . . . , xn) has continuous
second partial derivatives and c is a critical point for f . If the Hessian of f at
c is

1. positive-definite, then c is a local minimum,

2. negative-definite, then c is a local maximum,

If the Hessian of f at c is nondegenerate of index k, we say that c is a “saddle
point” of index k.
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Problem 6.4. a. Which of the critical points of the function f(x, y) = 3x2 −
3y2 − 2x3 are local minima? local maxima? saddle points of index one?

b. Which of the critical points of the function f(x, y) = (1/2)y2−cos x are local
minima? local maxima? saddle points of index one?

c. Which of the critical points of the function f(x, y) = cos x− (1/2)y2 are local
minima? local maxima? saddle points of index one?

How do we see that the second derivative test works? If f(x) = f(x1, x2, . . . , xn),
we can regard the gradient of f as defining a system of differential equations

dx1
dt = ∂f

∂x1
(x,x2, . . . , xn)

· · · · · ·
dxn

dt = ∂f
∂xn

(x,x2, . . . , xn)
(2)

Such a system of differential equations is called a gradient dynamical system. It
can be written in vector form as

dx
dt

= ∇f(x).

A constant solution c = (c1, . . . , cn) to the gradient dynamical system (2)
is just a critical point for f . It is easy to visualize gradient dynamical systems
in two variables. One begins by plotting the level curves f(x1, x2) = c, thus
obtaining a topographic map of the surface z = f(x1, x2). The orbits of the
gradient dynamical system are then just the orbits of the gradient dynamical
system.

One can think of the orbits of the gradient dynamical system

dx
dt

= ∇f(x)

as representing the paths of rain droplets flowing over the surface z = f(x1, x2),
except that they are traversed in the opposite direction. The mountain peaks,
mountain passes, and lake bottoms on the topographic map are included among
the critical points of f .

In more than two variables, the orbits of such systems are still orthogonal
to the level sets f(x1, . . . , xn) = c. One can have the same geometrical picture
in one’s mind.

To investigate the behaviour of a function f(x1, . . . , xn) near a critical point
c = (c1, . . . , cn), we can consider the linearization of the gradient dynamical
system (2) at the equilibrium solution c: dx1/dt

· · ·
dxn/dt

 =


∂

∂x1

(
∂f
∂x1

)
(c) · · · ∂

∂xn

(
∂f
∂x1

)
(c)

· · · · · · · · ·
∂

∂x1

(
∂f

∂xn

)
(c) · · · ∂

∂xn

(
∂f

∂xn

)
(c)


 x1 − c1

· · ·
xn − cn

 .

If we let

aij =
∂

∂xj

(
∂f

∂xi

)
(c),
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we can rewrite this system as dx1/dt
· · ·

dxn/dt

 =

 a11 . . . a1n

· · · · · · · · ·
an1 . . . ann

  x1 − c1

· · ·
xn − cn

 ,

or equivalently, as

dx
dt

= A(x− c) or
dy
dt

= Ay, where y = x− c,

and

A =

 a11 . . . a1n

· · · · · · · · ·
an1 . . . ann


is the Hessian matrix.

If c is a critical point for f(x1, . . . , xn) and

dx
dt

= A(x− c) is the linearization of
dx
dt

= ∇f(x)

at c, the eigenvalues of A determine the qualitative behaviour of the solutions to
the linearization. If all of the eigenvalues of A are negative, then all the nonzero
solutions will tend towards c as t → ∞. We see that in this case c is a local
maximum. If all of the eigenvalues are positive, then all the nonzero solutions
will move away from c as t →∞ and c musts be a local minimum.
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