
Math 5BI: Problem Set 4

Functions of many variables

Suppose that

z = f(x1, . . . , xn), and x1 = x1(t), . . . , xn = xn(t),

where the functions f, x1, . . . , xn are continuously differentiable. Then the chain
rule states that

dz

dt
=

∂f

∂x1

dx1

dt
+ . . . +

∂f

∂xn

dxn

dt
,

or as is sometimes written,

dz

dt
=

∂z

∂x1

dx1

dt
+ . . . +

∂z

∂xn

dxn

dt
. (1)

We can define the gradient of f(x1, . . . , xn) at the point (c1, . . . , cn) ∈ Rn

to be

∇f(c1, . . . , cn) =

 ∂f
∂x1

(c1, . . . , cn)
·

∂f
∂xn

(c1, . . . , cn)

 .

Then the chain rule can be restated in vector form as

z′(t0) = ∇f(x(t0)) · x′(t0),

where

x(t0) =

 x1(t0)
·

xn(t0)

 and x′(t0) =

 x′
1(t0)
·

x′
n(t0)

 .

Just as in the two and three-dimensional cases, the gradient points in the
direction of maximal increase of f and its magnitude is the rate of change of f
with respect to time for a particle moving at unit speed in the direction of the
gradient.

The linearization of f(x1, . . . , xn) at the point c = (c1, . . . , cn) is the function

L(x1, . . . , xn) = f(c1, . . . , cn) +
n∑

i=1

∂f

∂xi
(c1, . . . , cn)(xi − ci),

or in vector notation

L(x) = fi(c) +∇f(c) · (x− c).
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Definition. A point (c1, . . . , cn) ∈ Rn is said to be a critical point for a con-
tinuously differentiable function f(x1, . . . , xn) if ∇f(c1, . . . , cn) = 0.

If (c1, . . . , cn) is a point at which f(x1, . . . , xn) assumes a maximum or minimum
value, then (c1, . . . , cn) must be a critical point for f(x1, . . . , xn).

Problem 4.1. a. What are the critical points of the function

f(x1, x2, x3, x4) = x2
1 + 2x1x2 − x2

2 + x2
3 + x2

4 − 2x1 + 4x3?

b. Suppose that you know that the function

f(x1, x2, x3, x4) = x2
1 + 2x1x2 − x2

2 + x2
3 + x2

4 − 2x1 + 4x3

assumes a minimum at some point. What is that point?

A mapping F from Rn to Rm is defined by m functions of n variables:

y1 = f1(x1, . . . xn),
y2 = f2(x1, . . . xn),
. . .
ym = fm(x1, . . . xn).

(2)

It is often convenient to write this in vector notation. If we set

y =

 y1

.
ym

 , x =

 x1

.
xn

 , and F(x) =

 f1(x)
.

fm(x)

 ,

then we can write
y = F(x).

Important examples of mappings from Rn to Rm are the affine transforma-
tions,

y1 = a11x1 + . . . + a1nxn + b1,
y2 = a21x1 + . . . + a2nxn + b2,
. . .
ym = am1x1 + . . . + amnxn + bm.

If all of the bi’s are zero, such transformations are said to be linear.
If F : Rn → Rm is a nonlinear mapping, it is sometimes convenient to find its

best affine approximation near a given point (c1, . . . , cn). This is done by finding
the best affine approximation of each of its component functions fi. Thus the
best affine approximation to

y1 = f1(x1, . . . , xn),
y2 = f2(x1, . . . , xn),
. . .
ym = fm(x1, . . . , xn)

2



is
y1 = L1(x1, . . . , xn),
y2 = L2(x1, . . . , xn),
. . .
ym = Lm(x1, . . . , xn),

where
Li(x1, . . . , xm) = Li(x) = fi(c) +∇fi(c) · (x− c).

We can write this last set of equations in matrix form as y1

·
ym

 =

 f1(c)
·

fm(c)

 +

 ∂f1/∂x1(c) · ∂f1/∂xn(c)
· · ·

∂fm/∂x1(c) · ∂fm/∂xn(c)

  x1 − c1

·
xn − cn

 ,

or more succinctly as
y = F(c) + DF(c)(x− c),

where

DF(c) =

 ∂f1/∂x1(c) · ∂f1/∂xn(c)
· · ·

∂fm/∂x1(c) · ∂fm/∂xn(c)

 .

The matrix DF(c) is called the derivative of the mapping F at c. The affine
mapping

L(x) = F(c) + DF(c)(x− c)

is called the linearization of F at c.

Problem 4.2. a. Find the derivative of the mapping

F
(

x
y

)
=

(
x2 − y2

xy

)
at the point (1, 2).

b. Find the linearization of the mapping

F
(

x
y

)
=

(
x2 − y2

xy

)
at the point (2, 3).

For example, suppose that

dx1/dt = f1(x1, . . . xn),
dx2/dt = f2(x1, . . . xn),
. . .
dxm/dt = fm(x1, . . . xn).

(3)

is a nonlinear system of linear differential equations, written in vector form
as

dx/dt = F(x).
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It is often quite difficult to find the explicit solutions to such a system. We
say that x = c is a constant solution to this system if F(c) = 0. In this case,
we can linearize the system (??) near c, by replacing the right-hand side by its
linearization

dx/dt = F′(c)(x− c).

In terms of components, the new linearized system is

dx1/dt = (∂f1/∂x1)(c)(x1 − c1) + . . . + (∂f1/∂xn)(c)(xn − cn),
dx2/dt = (∂f2/∂x1)(c)(x1 − c1) + . . . + (∂f2/∂xn)(c)(xn − cn),
. . .
dxm/dt = (∂fn/∂x1)(c)(x1 − c1) + . . . + (∂fn/∂xn)(c)(xn − cn).

The solutions to this linear system are far easier to determine (for example,
we can use techniques of Math 5AI), and they will approximate the solutions
to the original nonlinear system near c.

Problem 4.3. a. Consider the Volterra-Lotka predator-prey system of differ-
ential equations

dx

dt
= x(1− y),

dy

dt
= y(x− 1).

Here x(t) represents the number of millions of rabbits on an island and y(t)
represents the number of thousands of foxes. This system can be written in
vector form as

dx
dt

= F(x), where F
(

x
y

)
=

(
x(1− y)
y(x− 1)

)
.

Find the linearization of F at the equilibrium point (1, 1).

b. Find the linearization of the predator-prey system of differential equations
at the point (1, 1).

c. Consider the related system of differential equations

dx

dt
= x(1− y)− 1

10
x2,

dy

dt
= y(x− 1).

Find the linearization of this system at the point (1, 9/10). Is the linearization
stable? What does this suggest about the stability of the equilibrium (1, 9/10)
for the nonlinear system?
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