
Math 5BI: Problem Set 12

Green’s Theorem

If F(x, y) = M(x, y)i is a vector field on a region D in the plane, where M(x, y)
and N(x, y) are smooth functions on D, and dx = dxi + dyj, then

F(x, y) · dx = M(x, y)dx+N(x, y)dy

is called a differential .
In particular if F = ∇f , where f(x, y) is a smooth scalar-valued function on

D then
F(x, y) · dx =

∂f

∂x
(x, y)dx+

∂f

∂y
(x, y)dy.

We write
df =

∂f

∂x
dx+

∂f

∂y
dy.

We say that a differential Mdx + Ndy is exact if Mdx + Ndy = df for some
smooth function f . Note that if Mdx+Ndy is exact, then

M =
∂f

∂x
, N =

∂f

∂y
⇒ ∂N

∂x
=

∂2f

∂x∂y
=
∂M

∂y
.

Problem 12.1. Determine which of the following differentials are exact:

xdy − ydx, ydx+ xdy, eydx+ xeydy.

Problem 12.2. a. Write the differential equation

dy

dx
= −2xy + ey

x2 + xey
in the form Mdx+Ndy = 0. (1)

b. Is it true that
∂N

∂x
=
∂M

∂y
?

c. Find a function f(x, y) such that df = Mdx+Ndy. Then f(x, y) = c, where
c is an arbitrary constant, is the general solution to the differential equation
(??).

Remark. This method of solving ordinary differential equations is called the
method of exact differentials.
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A differential Mdx+Ndy on a region D in the plane is said to be closed if

∂N

∂x
=
∂M

∂y
.

Note that every exact differential on a region D in the plane is closed, but we
will see that there are closed differentials on some regions D which are closed
but not exact!

Green’s Theorem relates double integrals to line integrals:

Green’s Theorem. Let D be a bounded region in the (x, y)-plane, bounded
by a piecewise smooth curve ∂D, directed so that as it is traversed in the
positive direction, the region D lies on the left. Let M(x, y)dx +N(x, y)dy be
a differential on D ∪ ∂D whose component functions M and N are smooth on
D ∪ ∂D. Then ∫

∂D

Mdx+Ndy =
∫ ∫

D

(
∂N

∂x
− ∂M

∂y

)
dxdy.

Problem 12.3. Suppose that D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}. Verify that
Green’s theorem holds for D and the differential Mdx+Ndy = ydx− xdy.

To prove Green’s Theorem, it suffices to prove the two simpler formulae∫
∂D

Mdx =
∫ ∫

D

(
−∂M
∂y

)
dxdy (2)

and ∫
∂D

Ndy =
∫ ∫

D

(
∂N

∂x

)
dxdy. (3)

We focus on (??); the proof of (??) is similar.
To prove (??) in the case where D is of the special form

D = {(x, y) ∈ R2 : a ≤ x ≤ b, φ(x) ≤ y ≤ ψ(x)},

of type I in the terminology we used before, we note that the boundary curve
∂D divides up into four pieces:

∂D = C1 + C3 −C2 −C4,

which have the following parametrizations:

C1 : x = t, y = φ(t), a ≤ x ≤ b,

C2 : x = t, y = ψ(t), a ≤ x ≤ b,

C3 : x = a, y = t, φ(a) ≤ x ≤ ψ(a),

C4 : x = b, y = t, φ(b) ≤ x ≤ ψ(b).
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Problem 12.4. a. Show that dx = 0 along C3 and C4. Use this fact to
evaluate ∫

C3

Mdx and
∫
C4

Mdx.

b. Show that ∫
∂D

Mdx =
∫
C1

Mdx−
∫
C2

Mdx.

c. Show that∫
∂D

Mdx =
∫ b

a

M(t, φ(t))dt−
∫ b

a

M(t, ψ(t))dt =
∫ b

a

[M(x, φ(x))−M(x, ψ(x))]dx.

d. Use the fundamental theorem of calculus to show that∫
∂D

Mdx =
∫ b

a

∫ ψ(x)

φ(x)

[
−∂M
∂y

(x, y)
]
dxdy = −

∫ ∫
D

∂M

∂y
(x, y)dxdy.

This establishes (??) in the case where D is of type I.

The general case of (??) is obtained by dividing a given region D into a disjoint
union of regions Di of type I. In this case,∫ ∫

D

−∂M
∂y

dxdy =
∑ ∫ ∫

Di

−∂M
∂y

dxdy =
∑ ∫

Di

Mdx =
∫
∂D

Mdx,

because the parts of the boundaries of the Di’s which lie inside D cancel in
pairs.

Problem 12.5. a. Suppose that

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} − {(0, 0)}.

Show that the differential

Mdx+Ndy =
ydx− xdy

x2 + y2
(4)

is closed.

b. Let C be the circle x2+y2 = 1 directed once in the counterclockwise direction.
Evaluate the line integral ∫

C

ydx− xdy

x2 + y2
.

c. Does your calculation in part c show that the differential (??) is closed but
not exact? Why or why not?

A region D ⊂ R2 is said to be convex if

p ∈ D and q ∈ D ⇒ (1− t)p+ tq ∈ D for all t ∈ [0, 1].
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Problem 12.6. Is the region

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} − {(0, 0)}

convex? Why or why not?

Poincaré Lemma. IfD is a convex region in R2 then every closed differential
on D is exact.

Problem 12.7. a. Suppose that F(x, y) = P (x, y)i + Q(x, y)j is a smooth
vector field on a region D in the (x, y)-plane, bounded by a piecewise smooth
curve ∂D, directed so that as it is traversed in the positive direction, the region
D lies on the left. Let T denote the unit-length tangent vector to ∂D and let
N denote the outward pointing unit-length normal to ∂D. Show that

(P (x, y)i +Q(x, y)j) ·N = (−Q(x, y)i + P (x, y)j) ·T

along ∂D.

b. Use Green’s Theorem to prove the Divergence Theorem:

Divergence Theorem. Let D be a bounded region in the (x, y)-plane,
bounded by a piecewise smooth curve ∂D. Let F(x, y) = P (x, y)dx+Q(x, y)dy
be a differential on D ∪ ∂D whose component functions P and Q are smooth.
Then ∫

∂D

F ·Nds =
∫ ∫

D

(
∂P

∂x
+
∂Q

∂y

)
dxdy.

Problem 12.8. Use the Divergence Theorem to evaluate the line integral∫
C

F ·Nds,

where C is the unit circle x2 + y2 = 1 and

F = (y cos ey)i + (x+ y)j.
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