
Math 5BI: Problem Set 11

Double and triple integrals

Suppose that D is a bounded region in the (x, y)-plane. We say that D is of
type I if it can be described in the form

D = {(x, y) ∈ R2 : a ≤ x ≤ b, φ(x) ≤ y ≤ ψ(x)},

and of type II if it is of the form

D = {(x, y) ∈ R2 : c ≤ y ≤ d, φ(y) ≤ x ≤ ψ(y)}.

We say that D is elementary if it is one of these two types.
Suppose, in addition, that f : D → R is a continuous function. If D is an

elementary region of type I, we set∫ ∫
D

f(x, y)dxdy =
∫ b

a

[∫ ψ(x)

φ(x)

f(x, y)dy

]
dx, (1)

while if D is of type II, we set∫ ∫
D

f(x, y)dxdy =
∫ d

c

[∫ ψ(y)

φ(y)

f(x, y)dx

]
dy. (2)

It can be shown that if a region D is of both type I and type II, the two
expressions for the double integral (??) and (??) agree. If D can be divided up
into a finite union of elementary regions D1, . . . , Dk such that each intersection
Di ∩Dj consists of finitely many curves, then∫ ∫

D

f(x, y)dxdy =
∫ ∫

D1

f(x, y)dxdy + . . .

∫ ∫
Dk

f(x, y)dxdy.

It can be shown that the result obtained is independent of the way in which D
is divided up into a finite disjoint union of elementary regions.

The double integral has many possible interpretations. Some of the most
important are these:

First, if f(x, y) ≡ 1, then∫ ∫
D

1dxdy = (area of D).
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If f(x, y) ≥ 0, then ∫ ∫
D

f(x, y)dxdy

is the volume of the region

E = {(x, y, z) ∈ R3 : (x, y) ∈ D, 0 ≤ z ≤ f(x, y)}.

If f(x, y) represents mass density at (x, y), then the double integral∫ ∫
D

f(x, y)dxdy

is the total mass of D. Finally, we can use the double integral to compute the
average value of f on D, by means of the formula,

(Average value of f on D) =

∫ ∫
D
f(x, y)dxdy∫ ∫
D

1dxdy
.

Problem 11.1. Let D = {(x, y) ∈ R2 : x2 ≤ y ≤ 2− x2}.
a. Find the area of D.

b. Find the center of mass of D.

c. Find the average value of the function f(x, y) = x2 + y2 on D.

d. Find the volume of the part of the paraboloid z = x2 + y2 which lies over D.

If E is a bounded region in (x, y, z)-space say that E is of type I if it can be
described in the form

E = {(x, y, z) ∈ R3 : (x, y) ∈ D,φ(x, y) ≤ z ≤ ψ(x, y)},

for some elementary region D in the (x, y)-plane. In this case∫ ∫ ∫
E

f(x, y, z)dxdydz =
∫ ∫

D

[∫ ψ(x,y)

φ(x,y)

f(x, y, z)dz

]
dxdy. (3)

Similarly, E is of type II if it can be described in the form

E = {(x, y, z) ∈ R3 : (x, z) ∈ D,φ(x, z) ≤ y ≤ ψ(x, z)},

for some elementary region D in the (x, z)-plane, in which case we set∫ ∫ ∫
E

f(x, y, z)dxdydz =
∫ ∫

D

[∫ ψ(x,z)

φ(x,z)

f(x, y, z)dy

]
dxdz, (4)

and E is of type III if it can be described in the form

E = {(x, y, z) ∈ R3 : (y, z) ∈ D,φ(y, z) ≤ x ≤ ψ(y, z)},
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for some elementary region D in the (y, z)-plane, in which case we set∫ ∫ ∫
E

f(x, y, z)dxdydz =
∫ ∫

D

[∫ ψ(y,z)

φ(y,z)

f(x, y, z)dx

]
dydz. (5)

If the three-dimensional region E can be divided up into a finite union of elemen-
tary regions E1, . . . , Ek such that each intersection Ei ∩ Ej consists of finitely
many surfaces, then we can define the integral of f over E by the formula∫ ∫ ∫

E

f(x, y, z)dxdydz

=
∫ ∫ ∫

E1

f(x, y, z)dxdydz + . . .+
∫ ∫ ∫

Ek

f(x, y, z)dxdydz.

Like the double integral, the triple integral has many possible interpretations,
depending on the context: volume, mass, average value, . . . .

Problem 11.2. Let E = {(x, y, z) ∈ R3 : x+ y + z ≤ 1, x ≥ 0, y ≥ 0, z ≥ 0}.
a. Find the volume of E.

b. Find the center of mass of E.

c. Find the average value of the function f(x, y, z) = x2 + y2 + z2 on E.

A differential in the plane is an expression of the form

M(x, y)dx+N(x, y)dy,

where M(x, y) and N(x, y) are smooth functions. As we saw in Problem Set 10,
differentials can be integrated along directed smooth curvers. Green’s Theorem
relates double integrals to line integrals:

Green’s Theorem. Let D be a bounded region in the (x, y)-plane, bounded
by a piecewise smooth curve ∂D, directed so that as it is traversed in the
positive direction, the region D lies on the left. Let M(x, y)dx+N(x, y)dy be a
differential on D∪∂D whose component functions M and N are smooth. Then∫

∂D

Mdx+Ndy =
∫ ∫

D

(
∂N

∂x
− ∂M

∂y

)
dxdy.

Problem 11.3. Use Green’s Theorem to evaluate the line integral∫
C

(e−x
2
dx+ xdy),

where C is the unit circle x2 + y2 = 1 traversed once in the counterclockwise
direction. Hint: First reduce the line integral to a double integral and then
evaluate the double integral.
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Conversely, Green’s theorem is often useful in evaluating double integrals. For
example, suppose we want a formula for the area of a region D bounded by a
smooth closed curve C. We need only find functions M(x, y) and N(x, y) so
that

∂N

∂x
− ∂M

∂y
= 1.

Then

Area of D =
∫ ∫

D

(
∂N

∂x
− ∂M

∂y

)
dxdy =

∫
C

Mdx+Ndy.

For example, we can set M = −y and N = 0, to obtain the formula

Area of D =
∫
C

−ydx,

or M = −(1/2)y and N = (1/2)x to obtain the formula

Area of D =
∫
C

[−(1/2)ydx+ (1/2)xdy]. (6)

Problem 11.4. Use Green’s Theorem to determine the area of the region in the
(x, y)-plane bounded by the curve x(2/3) +y(2/3) = 1. Hint: We can parametrize
this curve by

x(t) =
(

cos3 t
sin3 t

)
, t ∈ [0, 2π],

and use formula (??). Can you sketch the curve?
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