
Math 5BI: Problem Set 10

Line integrals of vector fields

Suppose that C is a directed regular curve in the plane, that is, a curve with
a sense of direction. Let x : [a, b] → R2 is a parametrization such that as x/dt
is never zero and as t increases, C is traversed in the positive direction. The
orientation picks our a unit tangent vector to C, the unit-length vector

T(t) =
x′(t)
|x′(t)|

.

Given a smooth vector field

F(x, y) = M(x, y)i + N(x, y)j,

we can form the line integral of the vector field F along C,∫
C

F ·Tds.

There are some very useful alternate notations for this line integral. Since

Tds = T
ds

dt
dt = x′(t)dt = dx = dxi + dyj,

we can write ∫
C

F ·Tds =
∫
C

F · dx =
∫
C

Mdx + Ndy.

An important interpretation of this line integral occurs in physics. If F rep-
resents the force acting on a body which moves along the parametrized directed
curve x : [a, b] → Rn, then the line integral∫

C

F · dx

represent the total work performed by the force on the body.

Problem 10.1. a. Suppose that F(x, y) = xyi + (y − 3)j and that C is the
part of the parabola parametrized by

x : [−1, 1] → R2, x(t) =
(

t
t2

)
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and directed from left to right. Show that

F ·Tds = xydx + (y − 3)dy.

b. Find ∫
C

F ·Tds.

It is particularly easy to calculate the line integral of a gradient along a directed
curve. Indeed, the “fundamental theorem of calculus,” which asserts that differ-
entiation and integration are inverse processes, can be generalized to the context
of line integrals:

Theorem. Let x : [a, b] → R2 be a parametrization of a directed curve C from
the point (x0, y0) to the point (x1, y1). If f(x, y) is any smooth function, then∫

C

∇f · dx = f(x1, y1)− f(x0, y0).

Problem 10.2. To prove this theorem, one uses the chain rule and the usual
version of the fundamental theorem of calculus. Prove the theorem by showing
that ∫

C

∇f · dx = · · · = f(x1, y1)− f(x0, y0).

The above ideas can be extended quite easily to directed curves in Rn. If
x : [a, b] → Rn is a parametrization of a regular curve C in Rn and

F(x1, . . . , xn) =

f1(x1, . . . , xn)
· · ·

fn(x1, . . . , xn)

 ,

then the line integral∫
C

F ·Tds =
∫
C

F · dx =
∫
C

f1dx1 + . . . + fndxn

can be calculated by simply expressing the last integral on the right in terms of
the parameter t,∫

C

F ·Tds =
∫ b

a

[
f1(x1(t), . . . , xn(t))

dx1

dt
+ · · ·+ fn(x1(t), . . . , xn(t))

dxn

dt

]
dt.

The above theorem can also be generalized to the case where R2 is replaced by
Rn. Thus if x : [a, b] → Rn is a parametrization of C,∫

C

(∇f) ·Tds = f(x(b))− f(x(a)).
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Problem 10.3. a. Evaluate the line integral∫
C

ydx− xdy,

where C is the straight line segment in R2 from (0, 0) to (3, 4).

b. Evaluate the same line integral in the case where C is the circle of radius
one in R2 centered at the origin, directed counterclockwise.

c. Evaluate the same line integral in the case where C is the curve parametrized
by

x : [0, 1] → R2, where x(t) = (t, t2).

Problem 10.4. a. Evaluate the line integral∫
C

zdx− xdy + ydz,

in the case where C is the curve in R3 parametrized by

x : [0, 1] → R3, where x(t) = (t, t2, t3).

b. Evaluate the line integral ∫
C

F ·Tds,

where F (x, y, z) = xi + yj − zk and C is the straight line segment in R3 from
(0, 0, 0) to (1, 2, 2).

Problem 10.5. a. Evaluate the line integral∫
C

∇f · dx,

where f(x, y) = x + 3y and C is the directed straight line segment in R2 from
(0, 0) to (3, 4).

b. Evaluate the line integral ∫
C

∇f · dx,

where f(x, y) = x + 3y and C is the circle of radius one in R2 centered at the
origin, directed counterclockwise.

c. Evaluate the line integral ∫
C

∇f · dx,

where f(x, y, z) = x2 + y2 + z2 and C is the directed curve in R3 parametrized
by

x : [0, 1] → R3, where x(t) = (t, t2, t3).
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