
Math 5BI: Problem Set I

Derivatives of functions of several variables

Recall that in first year calculus, one of the things the the derivative determines
is the equation of the line tangent to the graph of a function. If f(x) is a
differentiable function and x0 is a value for the variable x, then the line tangent
to the graph of the curve y = f(x) is given by the equation

y = f(x0) +
(

df

dx

)
(x0)(x− x0). (1)

In this equation x0, f(x0), and
(

df
dx

)
(x0) are constants, while x and y are

variables. The function

L(x) = f(x0) +
(

df

dx

)
(x0)(x− x0)

will be called the linearization of f(x) at x0. (Strictly speaking, it is not usually
a linear function, but an affine function, which is the same thing as a linear func-
tion plus a constant.) The tangent line to the graph of y = f(x) at (x0, f(x0))
is the graph of the linearization y = L(x) of f(x) at x0.

For example, if f(x) = x3 + 1, then (1, 2) lies on the graph of y = f(x), and
the local linearization at this point is L(x) = 2 + 3(x− 1). This function L(x)
is the best linear approximation to y = f(x) at the point (1, 2).

Problem 1.1. Suppose z = f(x, y) is the function of two variables given by
f(x, y) = x2 + y. Then (2, 5, 9) ∈ R3 lies on the graph of z = f(x, y). Extend
your thinking from the one-variable case to the two-variable case and figure out
what the local linearization of z = f(x, y) should be at the point (2, 5, 9).
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To visualize the meaning of the linearization of a function f(x, y) at a given
point (x0, y0), we consider two parametrized curves which lie on the graph of f
and intersect at the point (x0, y0, f(x0, y0)):

γ1 : R→ R3, γ1(x) = (x, y0, f(x, y0)),

γ2 : R→ R3, γ2(y) = (x0, y, f(x0, y)).

The parameters on these two curves are x and y, respectively. The velocity
vectors to these curves are

v1 =

 1
0

h′1(x0)

 , v2 =

 0
1

h′2(y0)

 . (2)

where h1(x) = f(x, y0) and h2(y) = f(x0, y)

Problem 1.2. (a) Explain, in geometric terms, what the above discussion
means.
(b) In the above notation we denote γ′1(x0) by (∂f/∂x)(x0, y0) and γ′2(y0) by
(∂f/∂y)(x0, y0). If you used limits, how would you define these?
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If z = f(x, y), where f is a smooth function and x0 and y0 are values for the
variables x and y, then the linearization of f at (x0, y0) is the affine function
(linear function plus a constant) whose graph is the tangent plane to the graph
of f at the point (x0, y0, f(x0, y0)).

To find this linearization, we need to take partial derivatives. The partial
derivative of f(x, y) with respect to x at (x0, y0) is given by the formula

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)
h

.

Thus the partial derivative of f(x, y) with respect to x at (x0, y0) is the ordinary
derivative of the function

x 7→ f(x, y0) at the point x0.

Similarly, the partial derivative of f(x, y) with respect to y at (x0, y0) is

∂f

∂y
(x0, y0) = lim

k→0

f(x0, y0 + k)− f(x0, y0)
k

.

Definition. Let f(x, y) be a function of two variables. We say that f is
continuously differentiable if it possesses partial derivatives ∂f

∂x (x, y) and ∂f
∂y (x, y)

which vary continuously with the point (x, y).

Problem 1.3. Consider the function z = f(x, y) = x2 + y2.
a. For this choice of f , find the velocity vector to the curve

γ1 : R→ R3, γ1(x) = (x, 2, f(x, 2))

at the point x = x0 = 3.

b. Find the velocity vector to the curve

γ2 : R→ R3, γ2(y) = (3, y, f(3, y))

at the point y = y0 = 2.

c. Find a vector perpendicular to the surface z = x2 + y2 at the point (3, 2, 13).

d. Find the equation of the plane tangent to the surface z = x2 +y2 at the point
(3, 2, 13) in two ways. First use the perpendicular vector and the dot product.
Then use the ideas involving the local linearization developed above. Explain
why they coincide.

Problem 1.4. Suppose that f(x, y) is a continuously differentiable function of
two variables. Based upon your work on the above problems,write up careful
notes explaining how to find the plane tangent to the surface z = f(x, y) at the
point (x0, y0, f(x0, y0)) and the local linearization of f at the point(x0, y0).
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It follows from the previous problem that the tangent plane to the surface
z = f(x, y) is horizontal if and only if(

∂f

∂x

)
(x0, y0) =

(
∂f

∂y

)
(x0, y0) = 0. (3)

A point satisfying (3) is called a critical point of the function f . If one thinks of
the graph of f as representing a mountain range, then mountain peaks, mountain
passes, and bottoms of lakes are critical points of f . In particular, if a function
f(x, y) assumes a local maximum or a local minimum at a point (x0, y0), then
(x0, y0) must be a critical point for f .

This last fact can be used to find the candidates for maxima and minima of
a given function of two variables.

Problem 1.5. a. Suppose two lines are given in parametric form by

x(t) =

 1
0
1

 + t

 2
−1
0

 , y(u) =

 1
4
6

 + u

 2
0
−1

 .

To find the distance between these two lines, we first let

f(t, u) = (distance from the point x(t) to the point y(u))2.

Find the critical points for the function f(t, u).

Problem 1.6. Let Π be the plane in R3 defined in parametric form by

x(s, t) =

 2
1
3

 + s

 3
0
1

 + t

 0
1
2

 .

a. Find the critical points of the function

f(s, t) = (distance from the point (3, 5, 1) to the point x(s, t))2.

b. Find the distance from the plane Π to the point (3, 5, 1).
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